10,325 research outputs found
Deep Learning based Recommender System: A Survey and New Perspectives
With the ever-growing volume of online information, recommender systems have
been an effective strategy to overcome such information overload. The utility
of recommender systems cannot be overstated, given its widespread adoption in
many web applications, along with its potential impact to ameliorate many
problems related to over-choice. In recent years, deep learning has garnered
considerable interest in many research fields such as computer vision and
natural language processing, owing not only to stellar performance but also the
attractive property of learning feature representations from scratch. The
influence of deep learning is also pervasive, recently demonstrating its
effectiveness when applied to information retrieval and recommender systems
research. Evidently, the field of deep learning in recommender system is
flourishing. This article aims to provide a comprehensive review of recent
research efforts on deep learning based recommender systems. More concretely,
we provide and devise a taxonomy of deep learning based recommendation models,
along with providing a comprehensive summary of the state-of-the-art. Finally,
we expand on current trends and provide new perspectives pertaining to this new
exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys.
https://doi.acm.org/10.1145/328502
A Personalised Ranking Framework with Multiple Sampling Criteria for Venue Recommendation
Recommending a ranked list of interesting venues to users based on their preferences has become a key functionality in Location-Based Social Networks (LBSNs) such as Yelp and Gowalla. Bayesian Personalised Ranking (BPR) is a popular pairwise recommendation technique that is used to generate the ranked list of venues of interest to a user, by leveraging the user's implicit feedback such as their check-ins as instances of positive feedback, while randomly sampling other venues as negative instances. To alleviate the sparsity that affects the usefulness of recommendations by BPR for users with few check-ins, various approaches have been proposed in the literature to incorporate additional sources of information such as the social links between users, the textual content of comments, as well as the geographical location of the venues. However, such approaches can only readily leverage one source of additional information for negative sampling. Instead, we propose a novel Personalised Ranking Framework with Multiple sampling Criteria (PRFMC) that leverages both geographical influence and social correlation to enhance the effectiveness of BPR. In particular, we apply a multi-centre Gaussian model and a power-law distribution method, to capture geographical influence and social correlation when sampling negative venues, respectively. Finally, we conduct comprehensive experiments using three large-scale datasets from the Yelp, Gowalla and Brightkite LBSNs. The experimental results demonstrate the effectiveness of fusing both geographical influence and social correlation in our proposed PRFMC framework and its superiority in comparison to BPR-based and other similar ranking approaches. Indeed, our PRFMC approach attains a 37% improvement in MRR over a recently proposed approach that identifies negative venues only from social links
A Survey of Location Prediction on Twitter
Locations, e.g., countries, states, cities, and point-of-interests, are
central to news, emergency events, and people's daily lives. Automatic
identification of locations associated with or mentioned in documents has been
explored for decades. As one of the most popular online social network
platforms, Twitter has attracted a large number of users who send millions of
tweets on daily basis. Due to the world-wide coverage of its users and
real-time freshness of tweets, location prediction on Twitter has gained
significant attention in recent years. Research efforts are spent on dealing
with new challenges and opportunities brought by the noisy, short, and
context-rich nature of tweets. In this survey, we aim at offering an overall
picture of location prediction on Twitter. Specifically, we concentrate on the
prediction of user home locations, tweet locations, and mentioned locations. We
first define the three tasks and review the evaluation metrics. By summarizing
Twitter network, tweet content, and tweet context as potential inputs, we then
structurally highlight how the problems depend on these inputs. Each dependency
is illustrated by a comprehensive review of the corresponding strategies
adopted in state-of-the-art approaches. In addition, we also briefly review two
related problems, i.e., semantic location prediction and point-of-interest
recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur
BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation
Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation
- …