110 research outputs found
WEIBULL DISTRIBUTION BASED ON EDUCATION PARTLY INTERVAL CENSORED DATA
The work in this project is concerned with the applying of techniques for the assessment of survival analysis in data that include censored observations. Survival analysis has a lot of achievement in the medical, engineering, economic, education and other fields and it also known as failure time analysis. Partly Interval Censoring (PIC) is one of the techniques of the censoring that used in the survival analysis and it can help to treat many types of data especially the incomplete data. One of the most commonly lifetime distribution used in the reliability applications is Weibull distribution. In this project we use Weibull model based on modified education partly interval censored data as well as medical data and simulation data. Based on the medical data, we found that our model is comparable with Turnbull method. From the education data and simulation study for this particular case, we can conclude that our proposed distribution describes well the nature of the model as compared to the Turnbull method in terms of the value of scale and shape parameter estimates. Plots of survival distribution function against failure time are used to examine the predicted survival patterns for the two types of failures
Turnbull versus Kaplan-Meier estimators of cure rate estimation using interval censored data
This study deals with the analysis of the cure rate estimation based on the Bounded Cumulative Hazard (BCH) model using interval censored data, given that the exact distribution of the data set is unknown. Thus, the non-parametric estimation methods are employed by means of the EM algorithm. The Turnbull and Kaplan Meier estimators were proposed to estimate the survival function, even though the Kaplan Meier estimator faces some restrictions in term of interval survival data. A comparison of the cure rate estimation based on the two estimators was done through a simulation study
Nonparametric methods for the estimation of the conditional distribution of an interval-censored lifetime given continuous covariates
Cette thèse contribue au développement de l'estimation non paramétrique de la fonction de survie conditionnelle étant donné une covariable continue avec données censurées. Elle est basée sur trois articles écrits avec mon directeur de thèse, le professeur Thierry Duchesne. Le premier article, intitulé "Une généralisation de l'estimateur de Turnbull pour l'estimation non paramétrique de la fonction de survie conditionnelle avec données censurées par intervalle, " a été publié en 2011 dans Lifetime Data Analysis, vol. 17, pp. 234 - 255. Le deuxième article, intitulé "Sur la performance de certains estimateurs nonparamétriques de la fonction de survie conditionnelle avec données censurées par intervalle, " est parru en 2011 dans la revue Computational Statistics & Data Analysis, vol. 55, pp. 3355-3364. Le troisième article, intitulé "Estimation de la fonction de survie conditionnelle d'un temps de défaillance étant donné une covariable variant dans le temps avec observations censurées par intervalles", sera bientôt soumis à la revue Statistica Sinica
Interval-censored semi-competing risks data: a novel approach for modelling bladder cancer
Aquesta tesi tracta sobre tècniques d'anàlisi de supervivència en situacions amb múltiples esdeveniments i patrons complexes de censura. Proposem una nova metodologia per tractar la situació de riscos semi-competitius quan les dades estan censurades en un interval. La motivació del treball neix de la nostra col·laboració amb l'Estudi Espanyol del Càncer de Bufeta (SBC/EPICURO), el més gran estudi sobre càncer de bufeta realitzat fins ara a l'Estat Espanyol. La nostra contribució en el projecte es centra en la modelització i identificació de factors pronòstics de l'evolució de la malaltia.L'evolució de malalties complexes, com el càncer o la infecció VIH, es caracteritza per la ocurrència de múltiples esdeveniments en el mateix pacient: per exemple, la recaiguda de la malaltia o la mort. Aquests esdeveniments poden ser finals, quan el seguiment del pacient s'atura després de l'esdeveniment, o bé intermedis, quan l'individu continua sota observació. La presència d'esdeveniments finals complica l'anàlisi dels intermedis ja que n'impedeix la seva completa observació, induint una possible censura depenent.En aquest context, es requereixen metodologies apropiades. Els següents mètodes són emprats: riscos competitius, models multiestat i riscos semi-competitius. A resultes de l'aplicació de mètodes per riscos competitius i models multi-estat, proposem dues aportacions rellevants al coneixement de la malaltia: (1) la caracterització dels pacients amb un alt risc de progressió com a primer esdeveniment després de la diagnosi, i (2) la construcció d'un model pronòstic dinàmic per al risc de progressió.La situació de riscos competitius es dóna quan volem descriure el temps fins al primer entre K possibles esdeveniments, juntament amb un indicador del tipus d'esdeveniment observat. En l'estudi EPICURO, és rellevant estudiar el temps fins al primer entre recidiva, progressió o mort. La caracterització d'aquest primer esdeveniment permetria seleccionar el millor tractament d'acord amb el perfil de risc basal del pacient.Els models multi-estat descriuen les diferents evolucions que la malaltia pot seguir, establint relacions entre els esdeveniments d'interès: per exemple, un pacient pot experimentar una recidiva del tumor primari, i després morir, o bé pot morir sense haver tingut cap recaiguda de la malaltia. Una característica interessant d'aquests models és que permeten fer prediccions del risc de futurs esdeveniments per a un pacient, d'acord amb la història que hagi pogut tenir fins aquell moment. En el cas de càncer de bufeta podrem avaluar la influència que té en el risc de progressar haver patit o no una recidiva prèvia.Un cas especial de model multi-estat és aquell que conté un esdeveniment intermedi E1, i un esdeveniment final, E2. Siguin T1 i T2 els temps fins aquests esdeveniments, respectivament. Ni l'anàlisi de riscos competitius ni els models multi-estat permeten adreçar l'estudi de la distribució marginal de T1. En efecte, l'anàlisi de riscos competitius tracta amb la distribució del mínim entre els dostemps, T=min(T1,T2), mentre que els models multi-estat es centren en la distribució condicional de T2|T1, és a dir, en com la ocurrència de E1 modifica el risc de E2. En aquest cas, la distribució de T1 no és identificable a partir de les dades observades. La situació abans descrita, on la ocurrència d'un esdeveniment final impedeix l'observació de l'esdeveniment intermedi és coneguda com a riscos semi-competitius (Fine et al., 2001). L'estratègia d'aquests autors passà per assumir un model per a la distribució conjunta (T1, T2), i aleshores recuperar la distribució marginal de T1 derivada d'aquest model.Proposem una nova metodologia per tractar amb riscos semi-competitius quan el temps fins l'esdeveniment intermedi, T1, està censurat en un interval. En molts estudis mèdics longitudinals, la ocurrència de l'esdeveniment d'interès s'avalua en visites periòdiques del pacient, i per tant, T1 és desconegut, però es sap que pertany al interval comprès entre els temps de dues visites consecutives. Els mètodes per riscos semi-competitius en el context usual de censura per la dreta no són vàlids en aquest cas i és necessària una nova aproximació. En aquest treball ampliem la metodología semi-paramètrica proposada per Fine et al. (2001), que assumeix un model de còpula de Clayton (1978) per a descriure la dependència entre T1 i T2. Assumint el mateix model, desenvolupem un algoritme iteratiu que estima conjuntament el paràmetre d'associació del model de còpula, així com la funció de supervivència del temps intermedi T1.Fine, J. P.; Jiang, H. & Chappell, R. (2001), 'On Semi-Competing Risks Data', Biometrika 88(4), 907--919.Clayton, D. G. (1978), 'A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial. Tendency in Chronic Disease Incidence', Biometrika 65(1), 141--151.La presente tesis trata sobre técnicas de análisis de supervivencia en situaciones con múltiples eventos y patrones complejos de censura. Proponemos una nueva metodología para tratar el problema de riesgos semi-competitivos cuando los datos están censurados en un intervalo. La motivación de este trabajo nace de nuestra colaboración con el estudio Español de Cáncer de Vejiga (SBC/EPICURO), el más grande estudio sobre cáncer de vejiga realizado en España hasta el momento. Nuestra participación en el mismo se centra en la modelización e identificación de factores pronósticos en el curso de la enfermedad.El curso de enfermedades complejas tales como el cáncer o la infección por VIH, se caracteriza por la ocurrencia de múltiples eventos en el mismo paciente, como por ejemplo la recaída o la muerte. Estos eventos pueden ser finales, cuando el seguimiento del paciente termina con el evento, o bien intermedios, cuando el individuo sigue bajo observación. La presencia de eventos finales complica el análisis de los eventos intermedios, ya que impiden su completa observación, induciendo una posible censura dependiente.En este contexto, se requieren metodologías apropiadas. Se utilizan los siguientes métodos: riesgos competitivos, modelos multiestado y riesgos semi-competitivos. De la aplicación de métodos para riesgos competitivos y modelos multi-estado resultan dos aportaciones relevantes sobre el conocimiento de la enfermedad: (1) la caracterización de los pacientes con un alto riesgo de progresión como primer evento después del diagnóstico, y (2) la construcción de un modelo pronóstico y dinámico para el riesgo de progresión.El problema de riesgos competitivos aparece cuando queremos describir el tiempo hasta el primero de K posibles eventos, junto con un indicador del tipo de evento observado. En el estudio SBC/EPICURO es relevante estudiar el tiempo hasta el primero entre recidiva, progresión o muerte. La caracterización de este primer evento permitiría seleccionar el tratamiento más adecuado de acuerdo con el perfil de riesgo basal del paciente.Los modelos multi-estado describen las diferentes tipologías que el curso de la enfermedad puede seguir, estableciendo relaciones entre los eventos de interés. Por ejemplo, un paciente puede experimentar una recidiva y después morir, o bien puede morir sin haber tenido recaída alguna. El potencial interesante de los modelos multi-estado es que permiten realizar predicciones sobre el riesgo de futuros eventos dada la historia del paciente hasta ese momento. En el caso del cáncer de vejiga, podremos evaluar la influencia que tiene en el riesgo de progresar el haber tenido o no una recidiva previa.Un caso especial de modelo multi-estado es el que contiene un evento intermedio E1 y uno final, E2. Sean T1 y T2 los tiempos hasta tales eventos, respectivamente. Ni el análisis de riesgos competitivos ni los modelos multi-estado permiten estudiar la distribución marginal de T1. En efecto, el análisis de riesgos competitivos trata con la distribución del mínimo entre los dos tiempos, T=min(T1,T2), mientras que los modelos multi-estado se centran en la distribución condicional de T2 dado T1, T2|T1, en cómo la ocurrencia de E1 modifica el riesgo de E2. En ambos casos, la distribución de T1 no es identificable a partir de los datos observados.La situación anteriormente descrita donde un evento final impide la observación de un evento intermedio se conoce como riesgos semi-competitivos (Fine et al. 2001). La estrategia de estos autores asume un modelo para la distribución conjunta (T1,T2) para así recuperar la distribución de T1 derivada de ese modelo.Proponemos una nueva metodología para tratar con riesgos semi-competitivos cuando el tiempo hasta el evento intermedio, T1, esta censurado en un intervalo. En muchos estudios médicos longitudinales, la ocurrencia del evento de interés se evalúa en visitas periódicas al paciente, por lo que T1 es desconocido, aunque se conoce que pertenece al intervalo comprendido entre los tiempos de dos visitas consecutivas. Los métodos para riesgos semi-competitivos en el contexto usual de censura por la derecha no son válidos en este caso y se requiere una nueva aproximación. En este trabajo ampliamos la metodología semi-paramétrica propuesta por Fine et al. (2001), que asume una cópula de Clayton (1978) para describir la dependencia entre T1 y T2. Bajo el mismo modelo de asociación, desarrollamos un algoritmo iterativo que estima conjuntamente el parámetro de asociación del modelo de cópula, así como la función de supervivencia del tiempo al evento intermedio T1.Fine, J. P.; Jiang, H. & Chappell, R. (2001), 'On Semi-Competing Risks Data', Biometrika 88(4), 907--919. Clayton, D. G. (1978), 'A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial. Tendency in Chronic Disease Incidence', Biometrika 65(1), 141--151
Accelerated failure time for Weibull distribution based partly interval censored data
In this project, the performance of maximum likelihood estimators of the
parameters of Accelerated Failure Time (AFT) regression model based on Weibull
distribution with simple imputations methods under Partly-Interval Censored (PIC)
data is studied and compared with semiparametric Cox model. From a real data set, the
results indicate that the AFT with Weibull distribution is comparable with Cox model
under PIC breast cancer data. This result suggests that the parameters of the model are
stable and the treatments are significant for breast cancer patients.
Hence, maximum likelihood estimation is an appropriate method for estimating
the parameters of our Weibull AFT based on simple imputation method under PIC data.
In the simulation study, using the AIC and LRT with their p-values, the results show
that our model is fit well and flexible under PIC data especially for exact observation.
This finding has led us to deduce the fact that the AFT with Weibull distribution can be
useful for modeling PIC dat
Proportional Hazard Regression Model Under Partly Interval-Censoring Assumption with Application to Prison Data
In this thesis the analysis of well-known model in survival study that is Cox
proportional hazard regression model via prison Partly Interval Censored (PIC) data is
used. The maximum likelihood estimate was considered to obtain the estimated of the
model parameter and the survival function and then the results were compared. In this
model several imputation techniques are used that is; left point, mean and median. In
contrast, the data needed to be modified to PIC data for the proposed of the researcher’s
needs. Likewise, simulation data was generated where the failure rates were taken based
on prison PIC data was also used to further compare these three imputation methods of
estimation.
From the prison data set and simulation study for this particular case, we can
conclude that the Cox model proved to be feasible and works well in terms of estimation
the survival function, likelihood ratio test and their P-value. In additional to that, based
on imputation techniques, the mean and median showed better results with respect to
estimate of the survival function
A Quantile Variant of the EM Algorithm and Its Applications to Parameter Estimation with Interval Data
The expectation-maximization (EM) algorithm is a powerful computational
technique for finding the maximum likelihood estimates for parametric models
when the data are not fully observed. The EM is best suited for situations
where the expectation in each E-step and the maximization in each M-step are
straightforward. A difficulty with the implementation of the EM algorithm is
that each E-step requires the integration of the log-likelihood function in
closed form. The explicit integration can be avoided by using what is known as
the Monte Carlo EM (MCEM) algorithm. The MCEM uses a random sample to estimate
the integral at each E-step. However, the problem with the MCEM is that it
often converges to the integral quite slowly and the convergence behavior can
also be unstable, which causes a computational burden. In this paper, we
propose what we refer to as the quantile variant of the EM (QEM) algorithm. We
prove that the proposed QEM method has an accuracy of while the MCEM
method has an accuracy of . Thus, the proposed QEM method
possesses faster and more stable convergence properties when compared with the
MCEM algorithm. The improved performance is illustrated through the numerical
studies. Several practical examples illustrating its use in interval-censored
data problems are also provided
Multiple imputation of timing of mother-to-child transmission of HIV
In this paper, we present a model for imputing timing of mother-to- child transmission (MTCT) of HIV. The method re ects the three modes of MTCT of HIV: in utero, during delivery and via breastfeeding and can accomodate shapes for the baseline hazard that vary between infants. Ad- ditionally, it allows that the majority of infants do not experience MTCT of HIV. Final analyses from the imputed data sets are combined in a mul- tiple imputation framework. The methods is illustrated on a large trial designed to assess the use of antibiotics in preventing MTCT of HIV and is validated using simulations. Additionally, we explore appropriate censoring techniques to account for weaning
Healthy And Unhealthy Statistics: Examining The Impact Of Erroneous Statistical Analyses In Health-Related Research
Sound statistical analyses are essential to the advancement of medicine. Although certainly not always the case, far too many publications are based on weak or inappropriate statistical methodology, leading to questionable results. Statistical reporting guidelines and standards for research are being introduced which should help curb this problem. Wide recognition of the need for statistical methodologies aligned with research questions and study designs, and the impact when this is not the case, would help prevent this problem. In this thesis, I illustrate the consequences of erroneous statistical analyses on data from an observational study on Multiple Sclerosis and I investigate the impact of inappropriate survival analyses through a simulation study
- …