74 research outputs found

    Learning mixtures of separated nonspherical Gaussians

    Full text link
    Mixtures of Gaussian (or normal) distributions arise in a variety of application areas. Many heuristics have been proposed for the task of finding the component Gaussians given samples from the mixture, such as the EM algorithm, a local-search heuristic from Dempster, Laird and Rubin [J. Roy. Statist. Soc. Ser. B 39 (1977) 1-38]. These do not provably run in polynomial time. We present the first algorithm that provably learns the component Gaussians in time that is polynomial in the dimension. The Gaussians may have arbitrary shape, but they must satisfy a ``separation condition'' which places a lower bound on the distance between the centers of any two component Gaussians. The mathematical results at the heart of our proof are ``distance concentration'' results--proved using isoperimetric inequalities--which establish bounds on the probability distribution of the distance between a pair of points generated according to the mixture. We also formalize the more general problem of max-likelihood fit of a Gaussian mixture to unstructured data.Comment: Published at http://dx.doi.org/10.1214/105051604000000512 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Probabilistic Analysis of EM for Mixtures of Separated, Spherical Gaussians

    Get PDF
    We show that, given data from a mixture of k well-separated spherical Gaussians in β„œ^d, a simple two-round variant of EM will, with high probability, learn the parameters of the Gaussians to near-optimal precision, if the dimension is high (d >> ln k). We relate this to previous theoretical and empirical work on the EM algorithm

    Training Gaussian Mixture Models at Scale via Coresets

    Get PDF
    How can we train a statistical mixture model on a massive data set? In this work we show how to construct coresets for mixtures of Gaussians. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size polynomial in dimension and the number of mixture components, while being independent of the data set size. Hence, one can harness computationally intensive algorithms to compute a good approximation on a significantly smaller data set. More importantly, such coresets can be efficiently constructed both in distributed and streaming settings and do not impose restrictions on the data generating process. Our results rely on a novel reduction of statistical estimation to problems in computational geometry and new combinatorial complexity results for mixtures of Gaussians. Empirical evaluation on several real-world datasets suggests that our coreset-based approach enables significant reduction in training-time with negligible approximation error

    Learning Mixtures of Distributions over Large Discrete Domains

    Get PDF
    We discuss recent results giving algorithms for learning mixtures of unstructured distributions

    Learning Arbitrary Statistical Mixtures of Discrete Distributions

    Get PDF
    We study the problem of learning from unlabeled samples very general statistical mixture models on large finite sets. Specifically, the model to be learned, Ο‘\vartheta, is a probability distribution over probability distributions pp, where each such pp is a probability distribution over [n]={1,2,…,n}[n] = \{1,2,\dots,n\}. When we sample from Ο‘\vartheta, we do not observe pp directly, but only indirectly and in very noisy fashion, by sampling from [n][n] repeatedly, independently KK times from the distribution pp. The problem is to infer Ο‘\vartheta to high accuracy in transportation (earthmover) distance. We give the first efficient algorithms for learning this mixture model without making any restricting assumptions on the structure of the distribution Ο‘\vartheta. We bound the quality of the solution as a function of the size of the samples KK and the number of samples used. Our model and results have applications to a variety of unsupervised learning scenarios, including learning topic models and collaborative filtering.Comment: 23 pages. Preliminary version in the Proceeding of the 47th ACM Symposium on the Theory of Computing (STOC15
    • …
    corecore