1,813 research outputs found
Recommended from our members
Laser desorption from and reconstruction on Si(100) surfaces studied by scanning tunneling microscopy
Laser irradiated Si(100) surfaces were studied with an ultrahigh-vacuum scanning tunneling microscopy (STM) system. Our observations indicate that only the dimerized outermost atomic layer is removed if the laser fluence is below the melting threshold with a photon energy larger than the band gap. The newly exposed layer, surprisingly, did not have a dimerized atomic structure, but rather, resembled that of a bulk-terminated structure. The uncovered layer remained atomically smooth (no vacancies) even after 90% of the outermost layer was removed. A possible explanation of these observations is that atom removal occurs by a preferential breakage of the atomic bonds in defect sites. When the laser fluence was increased to levels above the melting threshold, extensive surface roughening occurs
Ge quantum dot arrays grown by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface: nucleation, morphology and CMOS compatibility
Issues of morphology, nucleation and growth of Ge cluster arrays deposited by
ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered.
Difference in nucleation of quantum dots during Ge deposition at low (<600 deg
C) and high (>600 deg. C) temperatures is studied by high resolution scanning
tunneling microscopy. The atomic models of growth of both species of Ge
huts---pyramids and wedges---are proposed. The growth cycle of Ge QD arrays at
low temperatures is explored. A problem of lowering of the array formation
temperature is discussed with the focus on CMOS compatibility of the entire
process; a special attention is paid upon approaches to reduction of treatment
temperature during the Si(001) surface pre-growth cleaning, which is at once a
key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array
formation process. The temperature of the Si clean surface preparation, the
final high-temperature step of which is, as a rule, carried out directly in the
MBE chamber just before the structure deposition, determines the compatibility
of formation process of Ge-QD-array based devices with the CMOS manufacturing
cycle. Silicon surface hydrogenation at the final stage of its wet chemical
etching during the preliminary cleaning is proposed as a possible way of
efficient reduction of the Si wafer pre-growth annealing temperature.Comment: 30 pages, 11 figure
The Influence of Graphene Curvature on Hydrogen Adsorption: Towards Hydrogen Storage Devices
The ability of atomic hydrogen to chemisorb on graphene makes the latter a
promising material for hydrogen storage. Based on scanning tunneling microscopy
techniques, we report on site-selective adsorption of atomic hydrogen on
convexly curved regions of monolayer graphene grown on SiC(0001). This system
exhibits an intrinsic curvature owing to the interaction with the substrate. We
show that at low coverage hydrogen is found on convex areas of the graphene
lattice. No hydrogen is detected on concave regions. These findings are in
agreement with theoretical models which suggest that both binding energy and
adsorption barrier can be tuned by controlling the local curvature of the
graphene lattice. This curvature-dependence combined with the known graphene
flexibility may be exploited for storage and controlled release of hydrogen at
room temperature making it a valuable candidate for the implementation of
hydrogen-storage devices
Site-selective silicon adatom desorption using femtosecond laser pulse pairs and scanning tunneling microscopy
We performed an experimental study of silicon adatom desorption from the Si~111!-737 surfaceusing femtosecond laser pulse pair excitation with 80 fs pulse duration, 800 nm center wavelength,300 mW average power, and a 100 MHz repetition rate. Using scanning tunneling microscopy, wedirectly recorded the desorption characteristics at each delay setting for each of the four adatombinding sites. The study revealed a preferential dependence between the delay time and the adatomsites within a 66.6â1000 fs delay range
Excitation-Induced Ge Quantum Dot Growth on Si(100)-2X1 by Pulsed Laser Deposition
Self-assembled Ge quantum dots (QD) are grown on Si(100)-(2Ă1) with laser excitation during growth processes by pulsed laser deposition (PLD). In situ reflection-high energy electron diffraction (RHEED) and post-deposition atomic force microscopy (AFM) are used to study the growth dynamics and morphology of the QDs. A Q-switched Nd:YAG laser (λ = 1064 nm, 40 ns pulse width, 5 J/cm2 fluence, and 10 Hz repetition rate) were used to ablate germanium and irradiate the silicon substrate. Ge QD formation on Si(100)-(2Ă1) with different substrate temperatures and excitation laser energy densities was studied. The excitation laser reduces the epitaxial growth temperature to 250 °C for a 22 ML film. In addition, applying the excitation laser to the substrate during the growth changes the QD morphology and density and improves the uniformity of quantum dots fabricated at 390 °C. At room temperature, applying the excitation laser during growth decreases the surface roughness although epitaxial growth could not be achieved.
We have also studied the surface diffusion coefficient of Ge during pulsed laser deposition of Ge on Si(100)-(2Ă1) with different excitation laser energy densities. Applying the excitation laser to the substrate during the growth increases the surface diffusion coefficient, changes the QD morphology and density, and improves the size uniformity of the grown quantum dots.
To study the effect of high intensity ultralast laser pulses, Ge quantum dots on Si(I00) were grown in an ultrahigh vacuum (UHV) chamber (base pressure âŒ7.0x10 -10 Torr) by femtosecond pulsed laser deposition. The results show that excitation laser reduces the epitaxial growth temperature to âŒ70 °C. This result could lead to nonthermal method to achieve low temperature epitaxy which limits the redistribution of impurities, reduces intermixing in heteroepitaxy, and restricts the generation of defects by thermal stress.
We have ruled out thermal effects and some of the desorption models. Although further studies are needed to elucidate the mechanism involved, a purely electronic mechanism of enhanced surface diffusion of Ge atoms is proposed
Surface Dynamics of Silicon Low-Index Surfaces Studied by Reflection High-Energy Electron Diffraction
Surface morphology during the growth of Si on Si(111)-(7x7) by femtosecond pulsed laser deposition (fsPLD) is studied using reflection high-energy electron diffraction (RHEED) at different temperatures. The growth of Si on Si(111) has received considerable attention as a model system of homoepitaxy. PLD is a deposition technique that uses much more energetic species (atoms and ions) compared to other physical vapor deposition (PVD), such as in molecular beam epitaxy. In this work, in situ reflection high energy electron diffraction (RHEED) was used to study the dynamics of PLD of Si on Si(111)-(7x7). Epitaxial growth of Si/Si(111)-(7x7) at temperatures as low as 210°C was observed. For this substrate temperature, no change in RHEED patterns after growth, and only reduction in intensity during deposition was observed.
Surface Debye temperature of the topmost layer of the Si(111)-7x7 is measured by using RHEED. The diffraction intensity is distorted by the thermal vibration amplitude of atoms on the topmost layer of the surface.
Influence of Si deposition on the temperature of Si(111) to (7x7) phase transition is also studied. The phase transition showed that Si deposition lowers the transition temperature. A Ti-sapphire laser (100 fs, 800 nm, 1 kHz) was used to ablate a Si target on Si(111)-(1x1) during quenching from high temperature. The RHEED intensity was observed as the substrate was exposed to the Si plume and the Si(111) substrate was quenched. The RHEED patterns showed a shift in the transition temperature from 840°C without the plume to 820°C with the plume.
With laser fluence below the damage threshold, laser enhanced epitaxial growth shows a great improvement in deposit Si on Si(111)-7x7 at low temperature (room temperature)
Structure and Transport Properties of Epitaxial Oxide Thin Films: From Synthesis to Characterization
Epitaxial thin films and heterostructures based on perovskite oxides have attracted significant attention in physics since perovskites exhibit an enormous range of electrical, magnetic, and optical properties, making them exciting systems for studies of the fundamental physical mechanisms of interactions between electron, lattice, and spin degrees of freedom. This dissertation has been focused on ferroelectricity in lowdimensional ferroelectric materials using ultra-thin ferroelectric epitaxial films (BaTiO3) with a metallic electrode (SrRuO3) by studying polarized ordering of the crystal structure and electronic transport through the films. High quality and highly oxidized epitaxial films are a prerequisite for the clear observation of physical properties such as ferroelectricity which depends on a sensitive balance of lattice structure, dynamics, and charge distribution. Measurements in low dimensional, ultra-thin films require a controlled surface status through in-situ characterization. As is demonstrated here, fundamental physical phenomena on surfaces and in ultra-thin films are easily modified due to reactivity in ambient air, even for oxide materials generally considered inert. This study is centered on in-situ low energy electron diffraction and scanning tunneling spectroscopy of BaTiO3 films grown on SrRuO3 electrodes on a SrTiO3 substrate. Results show out-of-plane polarized structure and polarization switching, which provide evidence of ferroelectricity in films down to 4 ML. Surface reconstruction in 1-2 ML thick BaTiO3 films is seriously affected by the interface between BaTiO3 films and SrRuO3 bottom electrode. Our observation in epitaxial BaTiO3 films indicates the existence of ferroelectricity with a lower limit (4 ML) for the minimum thickness than theoretical expectation (6 ML), which results from the difference of film stress, termination on films, and depolarizing screening
Structural Order of the Molecular Adlayer Impacts the Stability of Nanoparticle-on-Mirror Plasmonic Cavities
Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically activated physical and chemical phenomena and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-Assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterward, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications.Fil: Ahmed, Aqeel. Ăcole Polytechnique FĂ©dĂ©rale de Lausanne; SuizaFil: Banjac, Karla. Ăcole Polytechnique FĂ©dĂ©rale de Lausanne; SuizaFil: Verlekar, Sachin S.. Ăcole Polytechnique FĂ©dĂ©rale de Lausanne; SuizaFil: Cometto, Fernando Pablo. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - CĂłrdoba. Instituto de Investigaciones en FĂsico-quĂmica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂmicas. Instituto de Investigaciones en FĂsico-quĂmica de CĂłrdoba; Argentina. Ăcole Polytechnique FĂ©dĂ©rale de Lausanne; Suiza. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂmicas. Departamento de FisicoquĂmica; ArgentinaFil: Lingenfelder, MagalĂ Alejandra. Ăcole Polytechnique FĂ©dĂ©rale de Lausanne; SuizaFil: Galland, Christophe. Ăcole Polytechnique FĂ©dĂ©rale de Lausanne; Suiz
Recommended from our members
From Surfaces to Interfaces: Ambient Pressure XPS and Beyond
The rapidly increasing field of surfaces under ambient conditions of temperature, and pressure in gas and liquid environments, reflects the importance of understanding surface properties in conditions closer to practical situations. This has been enabled by the emergence in the last two decades of a number of new techniques, both spectroscopy and microscopy, that can deliver atomic scale information with the required surface/interface sensitivity. Here we present a short review of recent advances to illustrate the novel understanding derived from the use of new techniques focusing on the gasâsolid interface, where two barriers have been bridged: the pressure gap, and the temperature gap. The later gap is very important when dealing with weakly bound molecules, where only by the presence of gas at a suitable pressure can a measurable coverage of adsorbed molecules be achieved. The temperature gap manifests also in the removal of kinetic barriers. Future developments to continue extending the range of pressures are also mentioned. Finally, new challenges that appear, both from X-ray and electron-induced damage to the sample, and from contamination under high pressure of desired gases, while maintaining very low pressures of undesirable ones
- âŠ