1,251 research outputs found

    Load forecasting on the user‐side by means of computational intelligence algorithms

    Get PDF
    Nowadays, it would be very difficult to deny the need to prioritize sustainable development through energy efficiency at all consumption levels. In this context, an energy management system (EMS) is a suitable option for continuously improving energy efficiency, particularly on the user side. An EMS is a set of technological tools that manages energy consumption information and allows its analysis. EMS, in combination with information technologies, has given rise to intelligent EMS (iEMS), which, aside from lending support to monitoring and reporting functions as an EMS does, it has the ability to model, forecast, control and diagnose energy consumption in a predictive way. The main objective of an iEMS is to continuously improve energy efficiency (on-line) as automatically as possible. The core of an iEMS is its load modeling forecasting system (LMFS). It takes advantage of historical information on energy consumption and energy-related variables in order to model and forecast load profiles and, if available, generator profiles. These models and forecasts are the main information used for iEMS applications for control and diagnosis. That is why in this thesis we have focused on the study, analysis and development of LMFS on the user side. The fact that the LMFS is applied on the user side to support an iEMS means that specific characteristics are required that in other areas of load forecasting they are not. First of all, the user-side load profiles (LPs) have a higher random behavior than others, as for example, in power system distribution or generation. This makes the modeling and forecasting process more difficult. Second, on the user side --for example an industrial user-- there is a high number and variety of places that can be monitored, modeled and forecasted, as well as their precedence or nature. Thus, on the one hand, an LMFS requires a high degree of autonomy to automatically or autonomously generate the demanded models. And on the other hand, it needs a high level of adaptability in order to be able to model and forecast different types of loads and different types of energies. Therefore, the addressed LMFS are those that do not look only for accuracy, but also adaptability and autonomy. Seeking to achieve these objectives, in this thesis work we have proposed three novel LMFS schemes based on hybrid algorithms from computational intelligence, signal processing and statistical theory. The first of them looked to improve adaptability, keeping in mind the importance of accuracy and autonomy. It was called an evolutionary training algorithm (ETA) and is based on adaptivenetwork-based-fuzzy-inference system (ANFIS) that is trained by a multi-objective genetic algorithm instead of its traditional training algorithm. As a result of this hybrid, the generalization capacity was improved (avoiding overfitting) and an easily adaptable training algorithm for new adaptive networks based on traditional ANFIS was obtained. The second scheme deals with LMF autonomy in order to build models from multiple loads automatically. Similar to the previous proposal, an ANFIS and a MOGA were used. In this case, the MOGA was used to find a near-optimal configuration for the ANFIS instead of training it. The LMFS relies on this configuration to work properly, as well as to maintain accuracy and generalization capabilities. Real data from an industrial scenario were used to test the proposed scheme and the multi-site modeling and self-configuration results were satisfactory. Furthermore, other algorithms were satisfactorily designed and tested for processing raw data in outlier detection and gap padding. The last of the proposed approaches sought to improve accuracy while keeping autonomy and adaptability. It took advantage of dominant patterns (DPs) that have lower time resolution than the target LP, so they are easier to model and forecast. The Hilbert-Huang transform and Hilbert-spectral analysis were used for detecting and selecting the DPs. Those selected were used in a proposed scheme of partial models (PM) based on parallel ANFIS or artificial neural networks (ANN) to extract the information and give it to the main PM. Therefore, LMFS accuracy improved and the user-side LP noising problem was reduced. Additionally, in order to compensate for the added complexity, versions of self-configured sub-LMFS for each PM were used. This point was fundamental since, the better the configuration, the better the accuracy of the model; and subsequently the information provided to the main partial model was that much better. Finally, and to close this thesis, an outlook of trends regarding iEMS and an outline of several hybrid algorithms that are pending study and testing are presented.En el contexto energético actual y particularmente en el lado del usuario, el concepto de sistema de gestión energética (EMS) se presenta como una alternativa apropiada para mejorar continuamente la eficiencia energética. Los EMSs en combinación con las tecnologías informáticas dan origen al concepto de iEMS, que además de soportar las funciones de los EMS, tienen la capacidad de modelar, pronosticar, controlar y supervisar los consumos energéticos. Su principal objetivo es el de realizar una mejora continua, lo más autónoma posible y predictiva de la eficiencia energética. Este tipo de sistemas tienen como núcleo fundamental el sistema de modelado y pronóstico de consumos (Load Modeling and Forecasting System, LMFS). El LMFS está habilitado para pronosticar el comportamiento futuro de cargas y, si es necesario, de generadores. Es sobre estos pronósticos sobre los cuales el iEMS puede realizar sus tareas automáticas y predictivas de optimización y supervisión. Los LMFS en el lado del usuario son el foco de esta tesis. Un LMFS en el lado del usuario, diseñado para soportar un iEMS requiere o demanda ciertas características que en otros contextos no serían tan necesarias. En primera estancia, los perfiles de los usuarios tienen un alto grado de aleatoriedad que los hace más difíciles de pronosticar. Segundo, en el lado del usuario, por ejemplo en la industria, el gran número de puntos a modelar requiere que el LMFS tenga por un lado, un nivel elevado de autonomía para generar de la manera más desatendida posible los modelos. Por otro lado, necesita un nivel elevado de adaptabilidad para que, usando la misma estructura o metodología, pueda modelar diferentes tipos de cargas cuya procedencia pude variar significativamente. Por lo tanto, los sistemas de modelado abordados en esta tesis son aquellos que no solo buscan mejorar la precisión, sino también la adaptabilidad y autonomía. En busca de estos objetivos y soportados principalmente por algoritmos de inteligencia computacional, procesamiento de señales y estadística, hemos propuesto tres algoritmos novedosos para el desarrollo de un LMFS en el lado del usuario. El primero de ellos busca mejorar la adaptabilidad del LMFS manteniendo una buena precisión y capacidad de autonomía. Denominado ETA, consiste del uso de una estructura ANFIS que es entrenada por un algoritmo genético multi objetivo (MOGA). Como resultado de este híbrido, obtenemos un algoritmo con excelentes capacidades de generalización y fácil de adaptar para el entrenamiento y evaluación de nuevas estructuras adaptativas basadas en ANFIS. El segundo de los algoritmos desarrollados aborda la autonomía del LMFS para así poder generar modelos de múltiples cargas. Al igual que en la anterior propuesta usamos un ANFIS y un MOGA, pero esta vez el MOGA en vez de entrenar el ANFIS, se utiliza para encontrar la configuración cuasi-óptima del ANFIS. Encontrar la configuración apropiada de un ANFIS es muy importante para obtener un buen funcionamiento del LMFS en lo que a precisión y generalización respecta. El LMFS propuesto, además de configurar automáticamente el ANFIS, incluyó diversos algoritmos para procesar los datos puros que casi siempre estuvieron contaminados de datos espurios y gaps de información, operando satisfactoriamente en las condiciones de prueba en un escenario real. El tercero y último de los algoritmos buscó mejorar la precisión manteniendo la autonomía y adaptabilidad, aprovechando para ello la existencia de patrones dominantes de más baja resolución temporal que el consumo objetivo, y que son más fáciles de modelar y pronosticar. La metodología desarrollada se basa en la transformada de Hilbert-Huang para detectar y seleccionar tales patrones dominantes. Además, esta metodología define el uso de modelos parciales de los patrones dominantes seleccionados, para mejorar la precisión del LMFS y mitigar el problema de aleatoriedad que afecta a los consumos en el lado del usuario. Adicionalmente, se incorporó el algoritmo de auto configuración que se presentó en la propuesta anterior para hallar la configuración cuasi-óptima de los modelos parciales. Este punto fue crucial puesto que a mejor configuración de los modelos parciales mayor es la mejora en precisión del pronóstico final. Finalmente y para cerrar este trabajo de tesis, se realizó una prospección de las tendencias en cuanto al uso de iEMS y se esbozaron varias propuestas de algoritmos híbridos, cuyo estudio y comprobación se plantea en futuros estudios

    Explainable pattern modelling and summarization in sensor equipped smart homes of elderly

    Get PDF
    In the next several decades, the proportion of the elderly population is expected to increase significantly. This has led to various efforts to help live them independently for longer periods of time. Smart homes equipped with sensors provide a potential solution by capturing various behavioral and physiological patterns of the residents. In this work, we develop techniques to model and detect changes in these patterns. The focus is on methods that are explainable in nature and allow for generating natural language descriptions. We propose a comprehensive change description framework that can detect unusual changes in the sensor parameters and describe the data leading to those changes in natural language. An approach that models and detects variations in physiological and behavioral routines of the elderly forms one part of the change description framework. The second part comes from a natural language generation system in which we identify important health-relevant features from the sensor parameters. Throughout this dissertation, we validate the developed techniques using both synthetic and real data obtained from the homes of the elderly living in sensor-equipped facilities. Using multiple real data retrospective case studies, we show that our methods are able to detect variations in the sensor data that are correlated with important health events in the elderly as recorded in their Electronic Health Records.Includes bibliographical reference

    Synthesis of hydrous iron oxide/aluminum hydroxide composite loaded on coal fly ash as an effective mesoporous and low-cost sorbent for Cr(VI) sorption: Fuzzy logic modeling

    Get PDF
    The aim of this research was to estimate the possibility of using synthesized hydrous iron oxide/aluminium hydroxide composite loaded on coal fly ash (FA3) as an efficient sorbent for Cr(VI) sorption from aqueous solution. In this regard, dissolution and precipitation processes were performed to rearrange and load the intrinsic iron and aluminum on the surface of fly ash. Different characterization techniques including XRD, XRF, FT-IR, SEM, LPS and BET surface area were applied to analyze the sorbent properties. Moreover, sorption kinetics were studied using Morris–Weber intra-particle diffusion, Lagergren pseudo-first-order and pseudo-second-order models. The kinetic analyses indicated that pseudo-first-order model controlled the sorption process. In order to estimate the sorbent capacity, Langmuir, Freundlich and D–R models were applied. The thermodynamic parameters of Cr(VI) sorption were also studied. In addition, removal efficiency of Cr(VI) was predicted using the developed fuzzy logic model. The fuzzification of four input variables including pH, contact time, adsorbent dose and initial Cr(VI) concentration versus removal efficiency as output was carried out using an artificial intelligence-based approach. A Mamdani-type fuzzy interface system was employed to fulfill a collection of 24 rules (If-Then format) using triangle membership functions (MFS) with seven levels in fuzzy sets. The proposed fuzzy logic model demonstrated high predictive performance with correlation coefficient (R2) of 0.95 and acceptable deviation from the experimental data, confirming its suitability to predict Cr(VI) removal efficiency. Based on experimental data and statistical analysis, the synthetized sorbent was effective for treating wastewater containing Cr(VI).Peer ReviewedPostprint (published version

    SHINE: Deep Learning-Based Accessible Parking Management System

    Full text link
    The ongoing expansion of urban areas facilitated by advancements in science and technology has resulted in a considerable increase in the number of privately owned vehicles worldwide, including in South Korea. However, this gradual increment in the number of vehicles has inevitably led to parking-related issues, including the abuse of disabled parking spaces (hereafter referred to as accessible parking spaces) designated for individuals with disabilities. Traditional license plate recognition (LPR) systems have proven inefficient in addressing such a problem in real-time due to the high frame rate of surveillance cameras, the presence of natural and artificial noise, and variations in lighting and weather conditions that impede detection and recognition by these systems. With the growing concept of parking 4.0, many sensors, IoT and deep learning-based approaches have been applied to automatic LPR and parking management systems. Nonetheless, the studies show a need for a robust and efficient model for managing accessible parking spaces in South Korea. To address this, we have proposed a novel system called, Shine, which uses the deep learning-based object detection algorithm for detecting the vehicle, license plate, and disability badges (referred to as cards, badges, or access badges hereafter) and verifies the rights of the driver to use accessible parking spaces by coordinating with the central server. Our model, which achieves a mean average precision of 92.16%, is expected to address the issue of accessible parking space abuse and contributes significantly towards efficient and effective parking management in urban environments

    A BIM-based Approach for Predictive Safety Planning in the Construction Industry

    Get PDF
    The number of safety incidents in the construction industry is higher than that in most of the other industries. These safety incidents can be attributed to a lack of information and training. The new line of thinking in management has been moving toward predictive decision-making methods with the aid of artificial intelligence (AI). In this regard, the construction industry has been lagging on embracing modern management concepts. Hence, it is vital to re-engineer construction management to be on par with industries such as manufacturing. Building Information Modelling (BIM) can be recognized as the most promising technology that is introduced to the construction sector in the recent past. The information contained in a BIM model can be manipulated to aid construction safety management. This research presents BIM-based methods for predictive safety planning in the construction industry. At first, a comprehensive review of construction management challenges was conducted. This review revealed that although there are some studies regarding BIM-based predictive decision-making, still some knowledge gaps can be mentioned in the safety management of construction workers and building residents. To address the mentioned challenges, at first, this study integrates BIM with fuzzy logic to improve predictive safety planning to reduce the safety incidents in the construction projects. A Fuzzy Inference System (FIS) was developed based on the causality of safety incidents. The FIS extracts construction project data from BIM models while automatically assessing the risk of each potential hazard and also the total risk of a project. The proposed method enables construction managers to prevent construction incidents and enhance the health and safety of construction workers. Furthermore, this study develops a methodological framework for rule checking and the safety-focused ruleset for BIM-enabled building construction projects in Ontario, Canada. Identified safety standards were defined in Solibri Model checker software as a ruleset. The outcomes of this section will ensure the occupant’s safety through a proper design. Moreover, the findings of this will support promoting BIM in the Canadian construction industry

    Acute lung injury in paediatric intensive care: course and outcome

    Get PDF
    Introduction: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) carry a high morbidity and mortality (10-90%). ALI is characterised by non-cardiogenic pulmonary oedema and refractory hypoxaemia of multifactorial aetiology [1]. There is limited data about outcome particularly in children. Methods This retrospective cohort study of 85 randomly selected patients with respiratory failure recruited from a prospectively collected database represents 7.1% of 1187 admissions. They include those treated with High Frequency Oscillation Ventilation (HFOV). The patients were admitted between 1 November 1998 and 31 October 2000. Results: Of the 85, 49 developed acute lung injury and 47 had ARDS. There were 26 males and 23 females with a median age and weight of 7.7 months (range 1 day-12.8 years) and 8 kg (range 0.8-40 kg). There were 7 deaths giving a crude mortality of 14.3%, all of which fulfilled the Consensus I [1] criteria for ARDS. Pulmonary occlusion pressures were not routinely measured. The A-a gradient and PaO2/FiO2 ratio (median + [95% CI]) were 37.46 [31.82-43.1] kPa and 19.12 [15.26-22.98] kPa respectively. The non-survivors had a significantly lower PaO2/FiO2 ratio (13 [6.07-19.93] kPa) compared to survivors (23.85 [19.57-28.13] kPa) (P = 0.03) and had a higher A-a gradient (51.05 [35.68-66.42] kPa) compared to survivors (36.07 [30.2-41.94]) kPa though not significant (P = 0.06). Twenty-nine patients (59.2%) were oscillated (Sensormedics 3100A) including all 7 non-survivors. There was no difference in ventilation requirements for CMV prior to oscillation. Seventeen of the 49 (34.7%) were treated with Nitric Oxide including 5 out of 7 non-survivors (71.4%). The median (95% CI) number of failed organs was 3 (1.96-4.04) for non-survivors compared to 1 (0.62-1.62) for survivors (P = 0.03). There were 27 patients with isolated respiratory failure all of whom survived. Six (85.7%) of the non-survivors also required cardiovascular support.Conclusion: A crude mortality of 14.3% compares favourably to published data. The A-a gradient and PaO2/FiO2 ratio may be of help in morbidity scoring in paediatric ARDS. Use of Nitric Oxide and HFOV is associated with increased mortality, which probably relates to the severity of disease. Multiple organ failure particularly respiratory and cardiac disease is associated with increased mortality. ARDS with isolated respiratory failure carries a good prognosis in children

    Health information and lifestyle behaviours: the impact of a diabetes diagnosis

    Get PDF
    We estimate short- and long-term causal impacts of a type-2 diabetes mellitus (T2DM) diagnosis on lifestyle behaviours. We employ a fuzzy regression discontinuity design exploiting the exogenous cut-off value in the diagnosis of T2DM provided by a biomarker (glycated haemoglobin, HbA1c). We make use of unique administrative longitudinal data from Spain and focus on the impact of a diagnosis on clinically measured BMI, smoking and alcohol consumption. We find that, following a T2DM diagnosis, individuals appear to reduce their weight in the short-term. These effects are particularly large among obese individuals and those diagnosed with depression. Patients who are younger, still in the labour market and healthier also present increased short-term probabilities of quitting smoking. In addition, we provide evidence of statistically significant long-term impacts of a T2DM diagnosis on BMI up to three years from the diagnosis. Our results are consistent across parametric and non-parametric estimations with varying bandwidths

    Fourth Annual Workshop on Space Operations Applications and Research (SOAR 90)

    Get PDF
    The proceedings of the SOAR workshop are presented. The technical areas included are as follows: Automation and Robotics; Environmental Interactions; Human Factors; Intelligent Systems; and Life Sciences. NASA and Air Force programmatic overviews and panel sessions were also held in each technical area

    An Intelligent System for Induction Motor Health Condition Monitoring

    Get PDF
    Induction motors (IMs) are commonly used in both industrial applications and household appliances. An IM online condition monitoring system is very useful to identify the IM fault at its initial stage, in order to prevent machinery malfunction, decreased productivity and even catastrophic failures. Although a series of research efforts have been conducted over decades for IM fault diagnosis using various approaches, it still remains a challenging task to accurately diagnose the IM fault due to the complex signal transmission path and environmental noise. The objective of this thesis is to develop a novel intelligent system for more reliable IM health condition monitoring. The developed intelligent monitor consists of two stages: feature extraction and decision-making. In feature extraction, a spectrum synch technique is proposed to extract representative features from collected stator current signals for fault detection in IM systems. The local bands related to IM health conditions are synchronized to enhance fault characteristic features; a central kurtosis method is suggested to extract representative information from the resulting spectrum and to formulate an index for fault diagnosis. In diagnostic pattern classification, an innovative selective boosting technique is proposed to effectively classify representative features into different IM health condition categories. On the other hand, IM health conditions can also be predicted by applying appropriate prognostic schemes. In system state forecasting, two forecasting techniques, a model-based pBoost predictor and a data-driven evolving fuzzy neural predictor, are proposed to forecast future states of the fault indices, which can be employed to further improve the accuracy of IM health condition monitoring. A novel fuzzy inference system is developed to integrate information from both the classifier and the predictor for IM health condition monitoring. The effectiveness of the proposed techniques and integrated monitor is verified through simulations and experimental tests corresponding to different IM states such as IMs with broken rotor bars and with the bearing outer race defect. The developed techniques, the selective boosting classifier, pBoost predictor and evolving fuzzy neural predictor, are effective tools that can be employed in a much wider range of applications. In order to select the most reliable technique in each processing module so as to provide a more positive assessment of IM health conditions, some more techniques are also proposed for each processing purpose. A conjugate Levebnerg-Marquardt method and a Laplace particle swarm technique are proposed for model parameter training, whereas a mutated particle filter technique is developed for system state prediction. These strong tools developed in this work could also be applied to fault diagnosis and other applications
    corecore