200 research outputs found
The Fourteenth Annual Conference YUCOMAT 2012: Programme and the Book of Abstracts
The First Conference on materials science and engineering, including physics, physical chemistry, condensed matter chemistry, and technology in general, was held in September 1995, in Herceg Novi. An initiative to establish Yugoslav Materials Research Society was born at the conference and, similar to other MR societies in the world, the programme was made and objectives determined. The Yugoslav Materials Research Society (Yu-MRS), a nongovernment and non-profit scientific association, was founded in 1997 to promote multidisciplinary goal-oriented research in materials science and engineering. The main task and objective of the Society has been to encourage creativity in materials research and engineering to reach a harmonic coordination between achievements in this field in our country and analogous activities in the world with an aim to include our country into global international projects.
Until 2003, Conferences were held every second year and then they grew into Annual Conferences that were traditionally held in Herceg Novi in September of every year. In 2007 Yu-MRS formed two new MRS: MRS-Serbia (official successor of Yu-MRS) and MRS-Montenegro (in founding). In 2008, MRS – Serbia became a member of FEMS (Federation of European Materials Societies)
Study of the consolidation process under macro- and microscopic thermal effects in selective laser sintering and selective laser melting
Selective Laser Sintering (SLS) and Selective Laser Melting (SLM) are parent Additive Manufacturing processes using a laser to solidify metallic, ceramic, polymer or composite powders. During the process, the object is built layer by layer. A laser source is responsible for the consolidation, by local heating. The light is deviated by a scanning head according to the instructions of an STL file. Then partial fusion of the particles takes place, followed by a solidification of the liquid created. Kinetics of these steps are very high and play an important role in the final microstructure (rearrangement of the particles, pore creation, residual stresses). In the case of polymers and composites the technique is now well understood and widely used, but for metals and ceramics it suffers from a lack of precision, surface roughness and poor mechanical properties. The goal of this Ph.D. work is to understand the effect of the thermal gradients on the consolidation process, using different laser parameters (power, pulse frequency, scan speed,…). In SLS, microscopic thermal gradients arise, due to the fact that the laser is pulsed and that only the exterior of the powder particles is molten. A thermal model to describe the interaction between a laser beam and a (spherical) grain is proposed. This model allows for the incorporation of the latent heat of fusion and for a realistic surrounding. The absorbed laser intensity is modeled by means of the Mie theory. Experiments where two particles of powder are isolated and illuminated by the laser are carried out in order to measure the interparticular necks and the volume of liquid formed for different repetition rates. The thermal model leads to good predictions of the particles final sintering state. Fluid flow models are investigated in order to determine the dynamic of the molten liquid. The main issue is to explain the capillary flow mechanisms leading from the molten material to the neck formation. Two models are derived to simulate the fluid flow between the particles. The first one simulates a capillary flow between two parallel plates. The second one deals with energetic considerations arising from Frenkel's principle. In both cases, the final output is the liquid life-time necessary to get the interparticular neck lengths experimentally observed. We point out that the two models predict the same liquid lifetime, although they are derived with different hypotheses. In SLM, continuous lasers are used and one has to deal with macroscopic thermal gradients, since the particles are completely molten. A very high laser power is used and the negative thermal effects (like thermal stresses or balling effects) are important. A solution to control them is to adjust the scanning strategy. Four scanning strategies are investigated for material with different thermal conductivities. The three-dimensional model used to describe the laser-matter interactions and the temperature evolution of the scanned powder bed allows for a finite latent heat (Stefan-problem) and for conductivity modifications due to the consolidation. We show that this finite element thermal model can be efficiently used to anticipate most of the problems (like cracks or balling) arising in practice. The benefit of avoiding thermal gradients is shown, in particular by EBSD analysis. Finally, applications of the SLS/SLM technique on different pieces built during this work are shown. A new way to build support structure is also proposed
Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures
This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles
Optical Absorption Properties and Applications of Fullerenes
The optical absorption properties of the basic C60, C70 and the higher fullerenes C76 and C84,
isolated from the obtained carbon soot extracts by the new improved chromatographic methods,
were investigated. Spectroscopic characterizations were performed using the IR and UV/VIS techniques that have not been presented previously for the higher fullerenes. The unique and the main, dominant optical absorption maxima of these molecules were registered in this research, in the regions where they intensively absorb. All the experimentally observed features were in excellent agreement with theoretical calculations, which has not been reported previously, as a significant advancement. Characteristic changes of locations and relative intensities of absorption bands were also observed, indicating separation of fullerenes in the similar, regular way in several different processes. The isolated fullerenes have important optical and electronic properties and applications, such as optical limiting, incorporation in special lenses and early diagnosis of diabetes, solar cells etc
Modelling the knot taper in Scots pine (Pinus sylvestris L.) from terrestrial laser scanning - derived branch attributes
Multiscale Biomechanics and Tribology of Inorganic and Organic Systems
This open access book gathers authoritative contributions concerning multiscale problems in biomechanics, geomechanics, materials science and tribology. It is written in memory of Sergey Grigorievich Psakhie to feature various aspects of his multifaceted research interests, ranging from theoretical physics, computer modeling of materials and material characterization at the atomic scale, to applications in space industry, medicine and geotectonics, and including organizational, psychological and philosophical aspects of scientific research and teaching as well. This book covers new advances relating to orthopedic implants, concerning the physiological, tribological and materials aspects of their behavior; medical and geological applications of permeable fluid-saturated materials; earthquake dynamics together with aspects relating to their managed and gentle release; lubrication, wear and material transfer in natural and artificial joints; material research in manufacturing processes; hard-soft matter interaction, including adhesive and capillary effects; using nanostructures for influencing living cells and for cancer treatment; manufacturing of surfaces with desired properties; self-organization of hierarchical structures during plastic deformation and thermal treatment; mechanics of composites and coatings; and many more. Covering established knowledge as well as new models and methods, this book provides readers with a comprehensive overview of the field, yet also with extensive details on each single topic
New advances in vehicular technology and automotive engineering
An automobile was seen as a simple accessory of luxury in the early years of the past
century. Therefore, it was an expensive asset which none of the common citizen could
afford. It was necessary to pass a long period and waiting for Henry Ford to establish
the first plants with the series fabrication. This new industrial paradigm makes easy to
the common American to acquire an automobile, either for running away or for
working purposes. Since that date, the automotive research grown exponentially to the
levels observed in the actuality. Now, the automobiles are indispensable goods; saying
with other words, the automobile is a first necessity article in a wide number of
aspects of living: for workers to allow them to move from their homes into their
workplaces, for transportation of students, for allowing the domestic women in their
home tasks, for ambulances to carry people with decease to the hospitals, for
transportation of materials, and so on, the list don’t ends. The new goal pursued by the
automotive industry is to provide electric vehicles at low cost and with high reliability.
This commitment is justified by the oil’s peak extraction on 50s of this century and also
by the necessity to reduce the emissions of CO2 to the atmosphere, as well as to reduce
the needs of this even more valuable natural resource. In order to achieve this task and
to improve the regular cars based on oil, the automotive industry is even more
concerned on doing applied research on technology and on fundamental research of
new materials. The most important idea to retain from the previous introduction is to
clarify the minds of the potential readers for the direct and indirect penetration of the
vehicles and the vehicular industry in the today’s life. In this sequence of ideas, this
book tries not only to fill a gap by presenting fresh subjects related to the vehicular
technology and to the automotive engineering but to provide guidelines for future
research.
This book account with valuable contributions from worldwide experts of
automotive’s field. The amount and type of contributions were judiciously selected to
cover a broad range of research. The reader can found the most recent and
cutting-edge sources of information divided in four major groups: electronics (power,
communications, optics, batteries, alternators and sensors), mechanics (suspension
control, torque converters, deformation analysis, structural monitoring), materials (nanotechnology, nanocomposites, lubrificants, biodegradable, composites, structural
monitoring) and manufacturing (supply chains).
We are sure that you will enjoy this book and will profit with the technical and
scientific contents. To finish, we are thankful to all of those who contributed to this
book and who made it possible.info:eu-repo/semantics/publishedVersio
- …