449 research outputs found

    KH-type splicing regulatory protein is involved in esophageal squamous cell carcinoma progression

    Get PDF
    KH-type splicing regulatory protein (KHSRP) is a multifunctional RNA-binding protein, which is involved in several post-transcriptional aspects of RNA metabolism, including microRNA (miRNA) biogenesis. It affects distinct cell functions in different tissues and can have an impact on various pathological conditions. In the present study, we investigated the oncogenic functions of KHSRP and their underlying mechanisms in the pathogenesis of esophageal squamous cell carcinoma (ESCC). KHSRP expression levels were elevated in ESCC tumors when compared with those in non-tumorous tissues by immunohistochemistry, and cytoplasmic KHSRP overexpression was found to be an independent prognosticator for worse overall survival in a cohort of 104 patients with ESCC. KHSRP knockdown inhibited growth, migration, and invasion of ESCC cells. KHSRP knockdown also inhibited the maturation of cancer-associated miRNAs, such as miR-21, miR-130b, and miR-301, and induced the expression of their target mRNAs, such as BMP6, PDCD4, and TIMP3, resulting in the inhibition of epithelial-to-mesenchymal transition. Our findings uncover a novel oncogenic function of KHSRP in esophageal tumorigenesis and implicate its use as a marker for prognostic evaluation and as a putative therapeutic target in ESCC

    Receptor for Activated Protein Kinase C: Requirement for Efficient MicroRNA Function and Reduced Expression in Hepatocellular Carcinoma

    Get PDF
    MicroRNAs (miRNAs) are important regulators of gene expression that control physiological and pathological processes. A global reduction in miRNA abundance and function is a general trait of human cancers, playing a causal role in the transformed phenotype. Here, we sought to newly identify genes involved in the regulation of miRNA function by performing a genetic screen using reporter constructs that measure miRNA function and retrovirus-based random gene disruption. Of the six genes identified, RACK1, which encodes “receptor for activated protein kinase C” (RACK1), was confirmed to be necessary for full miRNA function. RACK1 binds to KH-type splicing regulatory protein (KSRP), a member of the Dicer complex, and is required for the recruitment of mature miRNAs to the RNA-induced silencing complex (RISC). In addition, RACK1 expression was frequently found to be reduced in hepatocellular carcinoma. These findings suggest the involvement of RACK1 in miRNA function and indicate that reduced miRNA function, due to decreased expression of RACK1, may have pathologically relevant roles in liver cancers

    KSRP and MicroRNA 145 are negative regulators of lipolysis in white adipose tissue

    Get PDF
    White adipose tissue (WAT) releases fatty acids from stored triacylglycerol for an energy source. Here, we report that targeted deletion of KH-type splicing regulatory protein (KSRP), an RNA-binding protein that regulates gene expression at multiple levels, enhances lipolysis in epididymal WAT (eWAT) because of the upregulation of genes promoting lipolytic activity. Expression of microRNA 145 (miR-145) is decreased because of impaired primary miR-145 processing in Ksrp-/- eWAT. We show that miR-145 directly targets and represses Foxo1 and Cgi58, activators of lipolytic activity, and forced expression of miR-145 attenuates lipolysis. This study reveals a novel in vivo function of KSRP in controlling adipose lipolysis through posttranscriptional regulation of miR-145 expression

    A cytoplasmic variant of the KH-type splicing regulatory protein serves as a decay-promoting factor for phosphoglycerate kinase 2 mRNA in murine male germ cells

    Get PDF
    Phosphoglycerate kinase 2 (PGK2) is a germ cell-specific protein whose mRNA is translationally regulated in the mammalian testis. Using RNA affinity chromatography with the 3′-untranslated region (UTR) of Pgk2 mRNA and adult testis extracts, several associated proteins including a novel isoform of the AU-rich element RNA-binding protein and KH-type splicing regulatory protein (KSRP) were identified. KSRP, a protein of ∼75 kDa, is widely expressed in somatic and germ cells where it is primarily nuclear. In addition to the ∼75-kDa KSRP, a ∼52-kD KSRP, t-KSRP, is present in the cytoplasm of a subpopulation of germ cells. t-KSRP binds directly to a 93-nt sequence (designated the F1 region) of the 3′-UTR of the Pgk2 mRNA and destabilizes Pgk2 mRNA constructs in testis extracts and in transfected cells. We conclude that this testicular variant of the multifunctional nucleic acid–binding protein, KSRP, serves as a decay-promoting factor for Pgk2 mRNA in male germ cells

    KSRP-PMR1-exosome association determines parathyroid hormone mRNA levels and stability in transfected cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parathyroid hormone (PTH) gene expression is regulated post-transcriptionally through the binding of the <it>trans-</it>acting proteins AU rich binding factor 1 (AUF1), Upstream of N-<it>ras </it>(Unr) and KH-type splicing regulatory protein (KSRP) to an AU rich element (ARE) in PTH mRNA 3'-UTR. AUF1 and Unr stabilize PTH mRNA while KSRP, recruiting the exoribonucleolytic complex exosome, promotes PTH mRNA decay.</p> <p>Results</p> <p>PTH mRNA is cleaved by the endoribonuclease polysomal ribonuclease 1 (PMR1) in an ARE-dependent manner. Moreover, PMR1 co-immunoprecipitates with PTH mRNA, the exosome and KSRP. Knock-down of either exosome components or KSRP by siRNAs prevents PMR1-mediated cleavage of PTH mRNA.</p> <p>Conclusion</p> <p>PTH mRNA is a target for the endonuclease PMR1. The PMR1 mediated decrease in PTH mRNA levels involves the PTH mRNA 3'-UTR ARE, KSRP and the exosome. This represents an unanticipated mechanism by which the decay of an ARE-containing mRNA is facilitated by KSRP and is dependent on both the exosome and an endoribonuclease.</p

    Learning and Memory Abnormalities in Mice Deficient in the RNA-Binding Protein KSRP

    Get PDF
    Post-transcriptional regulation plays a critical role in the function and development of the nervous system; especially in the control of specific subsets of mRNAs localized to dendrites and axons. One such regulatory mechanism is the stabilization or disruption of mRNA through association of RNA binding proteins (RBPs) such as the KH-type splicing regulatory protein (KSRP). We have previously shown that loss of KSRP results in dysregulation of GAP-43 and increased growth of hippocampal neurons in vitro. Therefore, KSRP-/- and KSRP+/- animals were subjected to a battery of behavioral tests including Novel Object Recognition and Trace Fear Conditioning to assess hippocampal function as well as the Attentional Set Shifting Task to determine executive control capabilities. KSRP-/- animals have significantly greater recognition of the novel object, but are impaired in trace conditioning compared to age and sex matched WT controls. They also exhibit deficits in set-shifting of species-specific stimulus domains within the ASST task. KSRP-/- mice also display novelty induced hyperactivity that is present in several tests including novel open field, zero maze, and novel object recognition. We conclude that loss of KSRP leads to abnormalities in both hippocampal dependent and independent learning and memory as well as hyperactivity

    Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR

    Get PDF
    We purified the KH-type splicing regulatory protein (KSRP) as a protein interacting with the 3′-untranslated region (3′-UTR) of the human inducible nitric oxide (iNOS) mRNA. Immunodepletion of KSRP enhanced iNOS 3′-UTR RNA stability in in vitro-degradation assays. In DLD-1 cells overexpressing KSRP cytokine-induced iNOS expression was markedly reduced. In accordance, downregulation of KSRP expression increases iNOS expression by stabilizing iNOS mRNA. Co-immunoprecipitations showed interaction of KSRP with the exosome and tristetraprolin (TTP). To analyze the role of KSRP binding to the 3′-UTR we studied iNOS expression in DLD-1 cells overexpressing a non-binding mutant of KSRP. In these cells, iNOS expression was increased. Mapping of the binding site revealed KSRP interacting with the most 3′-located AU-rich element (ARE) of the human iNOS mRNA. This sequence is also the target for HuR, an iNOS mRNA stabilizing protein. We were able to demonstrate that KSRP and HuR compete for this binding site, and that intracellular binding to the iNOS mRNA was reduced for KSRP and enhanced for HuR after cytokine treatment. Finally, a complex interplay of KSRP with TTP and HuR seems to be essential for iNOS mRNA stabilization after cytokine stimulatio

    Involvement of KSRP in the post-transcriptional regulation of human iNOS expression–complex interplay of KSRP with TTP and HuR

    Get PDF
    We purified the KH-type splicing regulatory protein (KSRP) as a protein interacting with the 3′-untranslated region (3′-UTR) of the human inducible nitric oxide (iNOS) mRNA. Immunodepletion of KSRP enhanced iNOS 3′-UTR RNA stability in in vitro-degradation assays. In DLD-1 cells overexpressing KSRP cytokine-induced iNOS expression was markedly reduced. In accordance, downregulation of KSRP expression increases iNOS expression by stabilizing iNOS mRNA. Co-immunoprecipitations showed interaction of KSRP with the exosome and tristetraprolin (TTP). To analyze the role of KSRP binding to the 3′-UTR we studied iNOS expression in DLD-1 cells overexpressing a non-binding mutant of KSRP. In these cells, iNOS expression was increased. Mapping of the binding site revealed KSRP interacting with the most 3′-located AU-rich element (ARE) of the human iNOS mRNA. This sequence is also the target for HuR, an iNOS mRNA stabilizing protein. We were able to demonstrate that KSRP and HuR compete for this binding site, and that intracellular binding to the iNOS mRNA was reduced for KSRP and enhanced for HuR after cytokine treatment. Finally, a complex interplay of KSRP with TTP and HuR seems to be essential for iNOS mRNA stabilization after cytokine stimulation

    SOCS Proteins in Macrophage Polarization and Function

    Get PDF
    Peer reviewedPublisher PD
    corecore