470,411 research outputs found

    State determination: an iterative algorithm

    Full text link
    An iterative algorithm for state determination is presented that uses as physical input the probability distributions for the eigenvalues of two or more observables in an unknown state Φ\Phi. Starting form an arbitrary state Ψ0\Psi_{0}, a succession of states Ψn\Psi_{n} is obtained that converges to Φ\Phi or to a Pauli partner. This algorithm for state reconstruction is efficient and robust as is seen in the numerical tests presented and is a useful tool not only for state determination but also for the study of Pauli partners. Its main ingredient is the Physical Imposition Operator that changes any state to have the same physical properties, with respect to an observable, of another state.Comment: 11 pages 3 figure

    The MIMO Iterative Waterfilling Algorithm

    Full text link
    This paper considers the non-cooperative maximization of mutual information in the vector Gaussian interference channel in a fully distributed fashion via game theory. This problem has been widely studied in a number of works during the past decade for frequency-selective channels, and recently for the more general MIMO case, for which the state-of-the art results are valid only for nonsingular square channel matrices. Surprisingly, these results do not hold true when the channel matrices are rectangular and/or rank deficient matrices. The goal of this paper is to provide a complete characterization of the MIMO game for arbitrary channel matrices, in terms of conditions guaranteeing both the uniqueness of the Nash equilibrium and the convergence of asynchronous distributed iterative waterfilling algorithms. Our analysis hinges on new technical intermediate results, such as a new expression for the MIMO waterfilling projection valid (also) for singular matrices, a mean-value theorem for complex matrix-valued functions, and a general contraction theorem for the multiuser MIMO watefilling mapping valid for arbitrary channel matrices. The quite surprising result is that uniqueness/convergence conditions in the case of tall (possibly singular) channel matrices are more restrictive than those required in the case of (full rank) fat channel matrices. We also propose a modified game and algorithm with milder conditions for the uniqueness of the equilibrium and convergence, and virtually the same performance (in terms of Nash equilibria) of the original game.Comment: IEEE Transactions on Signal Processing (accepted

    PRISMA: PRoximal Iterative SMoothing Algorithm

    Full text link
    Motivated by learning problems including max-norm regularized matrix completion and clustering, robust PCA and sparse inverse covariance selection, we propose a novel optimization algorithm for minimizing a convex objective which decomposes into three parts: a smooth part, a simple non-smooth Lipschitz part, and a simple non-smooth non-Lipschitz part. We use a time variant smoothing strategy that allows us to obtain a guarantee that does not depend on knowing in advance the total number of iterations nor a bound on the domain

    Statistical-mechanical iterative algorithms on complex networks

    Full text link
    The Ising models have been applied for various problems on information sciences, social sciences, and so on. In many cases, solving these problems corresponds to minimizing the Bethe free energy. To minimize the Bethe free energy, a statistical-mechanical iterative algorithm is often used. We study the statistical-mechanical iterative algorithm on complex networks. To investigate effects of heterogeneous structures on the iterative algorithm, we introduce an iterative algorithm based on information of heterogeneity of complex networks, in which higher-degree nodes are likely to be updated more frequently than lower-degree ones. Numerical experiments clarified that the usage of the information of heterogeneity affects the algorithm in BA networks, but does not influence that in ER networks. It is revealed that information of the whole system propagates rapidly through such high-degree nodes in the case of Barab{\'a}si-Albert's scale-free networks.Comment: 7 pages, 6 figure

    On the Absence of Spurious Eigenstates in an Iterative Algorithm Proposed By Waxman

    Full text link
    We discuss a remarkable property of an iterative algorithm for eigenvalue problems recently advanced by Waxman that constitutes a clear advantage over other iterative procedures. In quantum mechanics, as well as in other fields, it is often necessary to deal with operators exhibiting both a continuum and a discrete spectrum. For this kind of operators, the problem of identifying spurious eigenpairs which appear in iterative algorithms like the Lanczos algorithm does not occur in the algorithm proposed by Waxman
    • …
    corecore