395,426 research outputs found
Service Virtualisation of Internet-of-Things Devices: Techniques and Challenges
Service virtualization is an approach that uses virtualized environments to
automatically test enterprise services in production-like conditions. Many
techniques have been proposed to provide such a realistic environment for
enterprise services. The Internet-of-Things (IoT) is an emerging field which
connects a diverse set of devices over different transport layers, using a
variety of protocols. Provisioning a virtual testbed of IoT devices can
accelerate IoT application development by enabling automated testing without
requiring a continuous connection to the physical devices. One solution is to
expand existing enterprise service virtualization to IoT environments. There
are various structural differences between the two environments that should be
considered to implement appropriate service virtualization for IoT. This paper
examines the structural differences between various IoT protocols and
enterprise protocols and identifies key technical challenges that need to be
addressed to implement service virtualization in IoT environments.Comment: 4 page
RADIS: Remote Attestation of Distributed IoT Services
Remote attestation is a security technique through which a remote trusted
party (i.e., Verifier) checks the trustworthiness of a potentially untrusted
device (i.e., Prover). In the Internet of Things (IoT) systems, the existing
remote attestation protocols propose various approaches to detect the modified
software and physical tampering attacks. However, in an interoperable IoT
system, in which IoT devices interact autonomously among themselves, an
additional problem arises: a compromised IoT service can influence the genuine
operation of other invoked service, without changing the software of the
latter. In this paper, we propose a protocol for Remote Attestation of
Distributed IoT Services (RADIS), which verifies the trustworthiness of
distributed IoT services. Instead of attesting the complete memory content of
the entire interoperable IoT devices, RADIS attests only the services involved
in performing a certain functionality. RADIS relies on a control-flow
attestation technique to detect IoT services that perform an unexpected
operation due to their interactions with a malicious remote service. Our
experiments show the effectiveness of our protocol in validating the integrity
status of a distributed IoT service.Comment: 21 pages, 10 figures, 2 table
Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms
The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
- …