23,348 research outputs found
Interaction of Colloidal Particles with Surfaces of Biological Significance
The adhesion of colloidal gold on membranes was examined
with an electron microscope with protein on the membrane, on
the colloidal particles and present on both membrane and particles.
The conditions for best adhesion were determined. Quantitative
measurements were caNied out using adhesion to the membrane
to monitor diffusion, centrifugation and electrophoresis of colloidal
particles. Electrophoresis in a centrifugal field was used as a nul
method to determine the charge on the colloidal particle
The effects of colloidal nanotopography on initial fibroblast adhesion and morphology
Colloidal lithography offers a simple, inexpensive method of producing irregular nanotopographies, a pattern not easily attainable utilizing conventional serial writing processes. Colloids with 20- or 50-nm diameter were utilized to produce such an irregular topography and were characterized by calculating the percentage area coverage of particles. Interparticle and nearest neighbor spacing were also assessed for the individual colloids in the pattern. Two-way analysis of variance (ANOVA) indicated significant differences between the number of fibroblasts adhering to planar, 20-, and 50-nm-diameter colloidal topographies, the number of fibroblasts adhering to the substrates at the time intervals studied, namely 20 min, 1 h, and 3 h and significant interaction between time and topography on fibroblast adhesion (P<0.01). Tukey tests were utilized for sensitive identification of the differences between the sample means and compounded ANOVA results. Cytoskeletal and general cell morphology were investigated on planar and colloidal substrates, and indicated cells in contact with irregular nanotopographies exhibit many peripheral protrusions while such protrusions are absent in cells on planar control surfaces. These protrusions are rich in microtubules on 20-nm-diameter colloidal surfaces while microfilaments are prevalent on 50-nm-diameter surfaces. Moreover, by 3 h, cells on the colloidal substrates initiate cell-cell adhesions, also absent in controls
Softening the "crystal-scaffold" for life's emergence
Del Giudice's group study how water can organize on hydrophilic surfaces
forming coherent domains (loaning energy from the quantum vacuum), plus
quasi-free electrons, whose excitations produce cold vortices, aligning to
ambient fields. Their electric and magnetic dipolar modes can couple to
oscillatory (electric-organic-dipoles), and/or rotary
(magnetic-mineral-dipoles), besides responding to magnetic potentials. Thus,
imprinted electromagnetic patterns of catalytic colloids - c.f. Cairns-Smith's
"crystal-scaffold"- on their structured water partners could have equipped the
latter with a selection-basis for 'choosing' their context-based "soft-matter"
(de Gennes) replacements. We consider the potential of the scenario of an
external control on magnetic colloids forming in the Hadean hydrothermal
setting (of Russell and coworkers) - via a magnetic-rock-field - conceptually
enabling self-assembly, induction of asymmetries, response effects towards
close-to-equilibrium dynamics, associative-networks, besides providing a
coherent environment for stabilizing associated symmetry-broken quanta, and
their feedback-interactions with those of coherent water-domains, to address
the emergence of metabolism and replication.Comment: 26 pages, pdf file. arXiv admin note: substantial text overlap with
arXiv:1008.236
Field-control, phase-transitions, and life's emergence
Instances of critical-like characteristics in living systems at each
organizational level as well as the spontaneous emergence of computation
(Langton), indicate the relevance of self-organized criticality (SOC). But
extrapolating complex bio-systems to life's origins, brings up a paradox: how
could simple organics--lacking the 'soft matter' response properties of today's
bio-molecules--have dissipated energy from primordial reactions in a controlled
manner for their 'ordering'? Nevertheless, a causal link of life's macroscopic
irreversible dynamics to the microscopic reversible laws of statistical
mechanics is indicated via the 'functional-takeover' of a soft magnetic
scaffold by organics (c.f. Cairns-Smith's 'crystal-scaffold'). A
field-controlled structure offers a mechanism for bootstrapping--bottom-up
assembly with top-down control: its super-paramagnetic components obey
reversible dynamics, but its dissipation of H-field energy for aggregation
breaks time-reversal symmetry. The responsive adjustments of the controlled
(host) mineral system to environmental changes would bring about mutual
coupling between random organic sets supported by it; here the generation of
long-range correlations within organic (guest) networks could include SOC-like
mechanisms. And, such cooperative adjustments enable the selection of the
functional configuration by altering the inorganic network's capacity to assist
a spontaneous process. A non-equilibrium dynamics could now drive the
kinetically-oriented system towards a series of phase-transitions with
appropriate organic replacements 'taking-over' its functions.Comment: 54 pages, pdf fil
Physics of Microswimmers - Single Particle Motion and Collective Behavior
Locomotion and transport of microorganisms in fluids is an essential aspect
of life. Search for food, orientation toward light, spreading of off-spring,
and the formation of colonies are only possible due to locomotion. Swimming at
the microscale occurs at low Reynolds numbers, where fluid friction and
viscosity dominates over inertia. Here, evolution achieved propulsion
mechanisms, which overcome and even exploit drag. Prominent propulsion
mechanisms are rotating helical flagella, exploited by many bacteria, and
snake-like or whip-like motion of eukaryotic flagella, utilized by sperm and
algae. For artificial microswimmers, alternative concepts to convert chemical
energy or heat into directed motion can be employed, which are potentially more
efficient. The dynamics of microswimmers comprises many facets, which are all
required to achieve locomotion. In this article, we review the physics of
locomotion of biological and synthetic microswimmers, and the collective
behavior of their assemblies. Starting from individual microswimmers, we
describe the various propulsion mechanism of biological and synthetic systems
and address the hydrodynamic aspects of swimming. This comprises
synchronization and the concerted beating of flagella and cilia. In addition,
the swimming behavior next to surfaces is examined. Finally, collective and
cooperate phenomena of various types of isotropic and anisotropic swimmers with
and without hydrodynamic interactions are discussed.Comment: 54 pages, 59 figures, review article, Reports of Progress in Physics
(to appear
Brownian motion near an elastic cell membrane: A theoretical study
Elastic confinements are an important component of many biological systems
and dictate the transport properties of suspended particles under flow. In this
chapter, we review the Brownian motion of a particle moving in the vicinity of
a living cell whose membrane is endowed with a resistance towards shear and
bending. The analytical calculations proceed through the computation of the
frequency-dependent mobility functions and the application of the
fluctuation-dissipation theorem. Elastic interfaces endow the system with
memory effects that lead to a long-lived anomalous subdiffusive regime of
nearby particles. In the steady limit, the diffusional behavior approaches that
near a no-slip hard wall. The analytical predictions are validated and
supplemented with boundary-integral simulations.Comment: 16 pages, 7 figures and 161 references. Contributed chapter to the
flowing matter boo
Reactive precursor particles as synthetic platform for the generation of functional nanoparticles, nanogels, and microgels
Precise control of the chemical functionality of polymer nanoparticles is a key requirement in tailoring their (dynamic) colloidal properties toward advanced applications. However, current synthetic techniques are still limited in the versatility of chemical design and preparation of such functional colloidal nanomaterials. Two major challenges remain: First, various particle preparation methods are restricted in their functional group tolerance, thus hindering certain combinations of polymer backbones with specific functional groups. Second, the preparation of particles with different functionalities requires the synthesis of different particle batches. But this often results in a simultaneous variation of colloidal features. As a result, the accurate determination of important structure–property relations is still hindered. To address these restrictions, postmodification of preformed reactive particles is gaining more attention. This technique has evolved from polymer synthesis, where postpolymerization functionalization enables the introduction of a plethora of functional groups without changing the degree of polymerization and the molecular weight distribution. Similarly, modifying precursor particles enables the introduction of functional groups into particles while reducing variations in colloidal features, e.g., particle size and size distribution. This powerful synthetic method complements established procedures for functionalization of particle surfaces, thereby enabling the facile preparation of (multi‐)functional particle libraries, which will allow precise investigations of structure–property relations
- …