175 research outputs found
Machine learning and its applications in reliability analysis systems
In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA
Concurrent Lexicalized Dependency Parsing: The ParseTalk Model
A grammar model for concurrent, object-oriented natural language parsing is
introduced. Complete lexical distribution of grammatical knowledge is achieved
building upon the head-oriented notions of valency and dependency, while
inheritance mechanisms are used to capture lexical generalizations. The
underlying concurrent computation model relies upon the actor paradigm. We
consider message passing protocols for establishing dependency relations and
ambiguity handling.Comment: 90kB, 7pages Postscrip
Artificial Intelligence in the Context of Human Consciousness
Artificial intelligence (AI) can be defined as the ability of a machine to learn and make decisions based on acquired information. AI’s development has incited rampant public speculation regarding the singularity theory: a futuristic phase in which intelligent machines are capable of creating increasingly intelligent systems. Its implications, combined with the close relationship between humanity and their machines, make achieving understanding both natural and artificial intelligence imperative. Researchers are continuing to discover natural processes responsible for essential human skills like decision-making, understanding language, and performing multiple processes simultaneously. Artificial intelligence attempts to simulate these functions through techniques like artificial neural networks, Markov Decision Processes, Human Language Technology, and Multi-Agent Systems, which rely upon a combination of mathematical models and hardware
A survey of agent-oriented methodologies
This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey
Neurocognitive Informatics Manifesto.
Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given
Connectionist models and figurative speech
This paper contains an introduction to connectionist models. Then we focus on the question of how novel figurative usages of descriptive adjectives may be interpreted in a structured connectionist model of conceptual combination. The suggestion is that inferences drawn from an adjective\u27s use in familiar contexts form the basis for all possible interpretations of the adjective in a novel context. The more plausible of the possibilities, it is speculated, are reinforced by some form of one-shot learning, rendering the interpretative process obsolete after only one (memorable) encounter with a novel figure of speech
Intelligent flight control systems
The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms
- …