3,690 research outputs found

    Paradoxical roles of antioxidant enzymes:Basic mechanisms and health implications

    Get PDF
    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways

    The Oxygen Paradox, the French Paradox, and age-related diseases

    Get PDF
    open46openDavies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, Henry J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A.Davies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, HENRY J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A

    Intersection between metabolic dysfunction, high fat diet consumption, and brain aging

    Get PDF
    Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high‐fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high‐fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age‐related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.Fil: Uranga, Romina Maria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; ArgentinaFil: Bruce Keller, Annadora J.. State University of Louisiana; Estados UnidosFil: Morrison, Christopher D.. State University of Louisiana; Estados UnidosFil: Fernandez Kim, Sun Ok. State University of Louisiana; Estados UnidosFil: Ebenezer, Philip J.. State University of Louisiana; Estados UnidosFil: Zhang, Le. State University of Louisiana; Estados UnidosFil: Dasuri, Kalavathi. State University of Louisiana; Estados UnidosFil: Keller, Jeffrey N.. State University of Louisiana; Estados Unido

    The complex interactions between obesity, metabolism and the brain

    Get PDF
    Obesity is increasing at unprecedented levels globally, and the overall impact ofobesity on the various organ systems of the body is only beginning to be fullyappreciated. Because of the myriad of direct and indirect effects of obesity causingdysfunction of multiple tissues and organs, it is likely that there will be heterogeneityin the presentation of obesity effects in any given population. Taken together, theserealities make it increasingly difficult to understand the complex interplay betweenobesity effects on different organs, including the brain. The focus of this review isto provide a comprehensive view of metabolic disturbances present in obesity, theirdirect and indirect effects on the different organ systems of the body, and to discussthe interaction of these effects in the context of brain aging and the development ofneurodegenerative diseases.Fil: Uranga, Romina Maria. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; ArgentinaFil: Keller, Jeffrey Neil. Louisiana State University System; Estados Unido

    In Search for Anti-Aging Strategy: Can We Rejuvenate Our Aging Stem Cells?

    Get PDF
    BACKGROUND: Recent evidence suggested that we grow old partly because of our stem cells grow old as a result of mechanisms that suppress the development of cancer over a lifetime. We believe that a further, more precise mechanistic understanding of this process will be required before this knowledge can be translated into human anti-aging therapies.CONTENT: A diminished capacity to maintain tissue homeostasis is a central physiological characteristic of aging. As stem cells regulate tissue homeostasis, depletion of stem cell reserves and/or diminished stem cell function have been postulated to contribute to aging. It has further been suggested that accumulated DNA damage could be a principal mechanism underlying age-dependent stem cell decline. It is interesting that many of the rejuvenating interventions act on the stem cell compartments, perhaps reflecting shared genetic and biochemical pathways controlling stem cell function and longevity. Strategy to slow down the aging processes is based on caloric restriction refers to a dietary regimen low in calories but without undernutrition. Sirtuin (SIRT)1 and 3, increases longevity by mimicking the beneficial effects of caloric restriction. SIRT3 regulates stress-responsive mitochondrial homeostasis, and more importantly, SIRT3 upregulation rejuvenates aged stem cells in tissues. Resveratrol (3,5,4\u27-trihydroxystilbene), a natural polyphenol found in grapes and wine, was the most powerful natural activator of SIRT1. In fact, resveratrol treatment has been demonstrated to rescue adult stem cell decline, slow down bodyweight loss, improve trabecular bone structure and mineral density, and significantly extend lifespan.SUMMARY: Tissue-specific stem cells persist throughout the entire lifespan to repair and maintain tissues, but their self-renewal and differentiation potential become dysregulated with aging. Given that adult stem cells are thought to be central to tissue maintenance and organismal survival, SIRT3 may promote organismal longevity by maintaining the integrity of tissue-speciic stem cells

    Effects of hormonal changes on sarcopenia in chronic kidney disease: where are we now and what can we do?

    Get PDF
    Sarcopenia or muscle wasting is a progressive and generalized skeletal muscle disorder involving the accelerated loss of muscle mass and function, often associated with muscle weakness (dynapenia) and frailty. Whereas primary sarcopenia is related to ageing, secondary sarcopenia happens independent of age in the context of chronic disease states such as chronic kidney disease (CKD). Sarcopenia has become a major focus of research and public policy debate due to its impact on patient's health-related quality of life, health-care expenditure, morbidity, and mortality. The development of sarcopenia in patients with CKD is multifactorial and it may occur independently of weight loss or cachexia including under obese sarcopenia. Hormonal imbalances can facilitate the development of sarcopenia in the general population and is a common finding in CKD. Hormones that may influence the development of sarcopenia are testosterone, growth hormone, insulin, thyroid hormones, and vitamin D. Although the relationship between free testosterone level that is low in uraemic patients and sarcopenia in CKD is not well-defined, functional improvement may be seen. Unlike testosterone, it is known that vitamin D is associated with muscle strength, muscle size, and physical performance in patients with CKD. Outcomes after vitamin D replacement therapy are still controversial. The half-life of growth hormone (GH) is prolonged in patients with CKD. Besides, IGF-1 levels are normal in patients with Stage 4 CKD-a minimal reduction is seen in the end-stage renal disease. Unresponsiveness or resistance of IGF-1 and changes in the GH/IGF-1 axis are the main causes of sarcopenia in CKD. Low serum T3 level is frequent in CKD, but the net effect on sarcopenia is not well-studied. CKD patients develop insulin resistance (IR) from the earliest period even before GFR decline begins. IR reduces glucose utilization as an energy source by hepatic gluconeogenesis, decreasing muscle glucose uptake, impairing intracellular glucose metabolism. This cascade results in muscle protein breakdown. IR and sarcopenia might also be a new pathway for targeting. Ghrelin, oestrogen, cortisol, and dehydroepiandrosterone may be other players in the setting of sarcopenia. In this review, we mainly examine the effects of hormonal changes on the occurrence of sarcopenia in patients with CKD via the available data

    Caloric Intake in Renal Patients: Repercussions on Mineral Metabolism

    Get PDF
    The aim of this paper is to review current knowledge about how calorie intake influences mineral metabolism focussing on four aspects of major interest for the renal patient: (a) phosphate (P) handling, (b) fibroblast growth factor 23 (FGF23) and calcitriol synthesis and secretion, (c) metabolic bone disease, and (d) vascular calcification (VC). Caloric intake has been shown to modulate P balance in experimental models: high caloric intake promotes P retention, while caloric restriction decreases plasma P concentrations. Synthesis and secretion of the phosphaturic hormone FGF23 is directly influenced by energy intake; a direct correlation between caloric intake and FGF23 plasma concentrations has been shown in animals and humans. Moreover, in vitro, energy availability has been demonstrated to regulate FGF23 synthesis through mechanisms in which the molecular target of rapamycin (mTOR) signalling pathway is involved. Plasma calcitriol concentrations are inversely proportional to caloric intake due to modulation by FGF23 of the enzymes implicated in vitamin D metabolism. The effect of caloric intake on bone is controversial. High caloric intake has been reported to increase bone mass, but the associated changes in adipokines and cytokines may as well be deleterious for bone. Low caloric intake tends to reduce bone mass but also may provide indirect (through modulation of inflammation and insulin regulation) beneficial effects on bone. Finally, while VC has been shown to be exacerbated by diets with high caloric content, the opposite has not been demonstrated with low calorie intake. In conclusion, although prospective studies in humans are needed, when planning caloric intake for a renal patient, it is important to take into consideration the associated changes in mineral metabolism
    • 

    corecore