57,267 research outputs found
Influenza and memory T cells : how to awake the force
Annual influenza vaccination is an effective way to prevent human influenza. Current vaccines are mainly focused on eliciting a strain-matched humoral immune response, requiring yearly updates, and do not provide protection for all vaccinated individuals. The past few years, the importance of cellular immunity, and especially memory T cells, in long-lived protection against influenza virus has become clear. To overcome the shortcomings of current influenza vaccines, eliciting both humoral and cellular immunity is imperative. Today, several new vaccines such as infection-permissive and recombinant T cell inducing vaccines, are being developed and show promising results. These vaccines will allow us to stay several steps ahead of the constantly evolving influenza virus
Cross-protection induced by influenza: from infection to vaccines
Influenza is one of the major respiratory diseases in humans and a large burden for human health and for the economy. Vaccination is the primary strategy to protect from influenza virus infection. Current influenza vaccines mainly induce strain-specific neutralizing antibodies, thereby providing protection against the virus strains present in the vaccine. However, influenza virus mutates frequently, generating new virus strains every year. Influenza vaccines have therefore to be updated annually to match these new strains. A vaccine or vaccination strategy capable of providing broad protection against a range of different influenza virus strains, so-called cross-protection, is urgently required. In this thesis we tried to understand the immune mechanisms contributing to cross-protection, to determine their respective role in protection against variant influenza virus strains, and to elucidate how these mechanisms could be induced or altered. We found that both antibody responses and T cell responses are required for optimal cross-protection. These cross- protecting immune responses could be simply induced by sequential immunization of mice with whole inactivated influenza virus vaccines derived from different virus strains. Cross-reactive influenza-specific antibody and T cell responses could also be elicited by immunization with reconstituted influenza virus membrane envelopes carrying an adjuvant and conserved influenza virus proteins. Our research paves a path for the development of new generations of cross-protective influenza vaccines
Chemical-free inactivated whole influenza virus vaccine prepared by ultrashort pulsed laser treatment
There is an urgent need for rapid methods to develop vaccines in response to emerging viral pathogens. Whole inactivated virus (WIV) vaccines represent an ideal strategy for this purpose; however, a universal method for producing safe and immunogenic inactivated vaccines is lacking. Conventional pathogen inactivation methods such as formalin, heat, ultraviolet light, and gamma rays cause structural alterations in vaccines that lead to reduced neutralizing antibody specificity, and in some cases, disastrous T helper type 2-mediated immune pathology. We have evaluated the potential of a visible ultrashort pulsed (USP) laser method to generate safe and immunogenic WIV vaccines without adjuvants. Specifically, we demonstrate that vaccination of mice with laser-inactivated H1N1 influenza virus at about a 10-fold lower dose than that required using conventional formalin-inactivated influenza vaccines results in protection against lethal H1N1 challenge in mice. The virus, inactivated by the USP laser irradiation, has been shown to retain its surface protein structure through hemagglutination assay. Unlike conventional inactivation methods, laser treatment did not generate carbonyl groups in protein, thereby reducing the risk of adverse vaccine-elicited T helper type 2 responses. Therefore, USP laser treatment is an attractive potential strategy to generate WIV vaccines with greater potency and safety than vaccines produced by current inactivation techniques
TIV vaccination modulates host responses to influenza virus infection that correlate with protection against bacterial superinfection
Background: Influenza virus infection predisposes to secondary bacterial pneumonia. Currently licensed influenza vaccines aim at the induction of neutralizing antibodies and are less effective if the induction of neutralizing antibodies is low and/or the influenza virus changes its antigenic surface. We investigated the effect of suboptimal vaccination on the outcome of post-influenza bacterial superinfection.
Methods: We established a mouse vaccination model that allows control of disease severity after influenza virus infection despite inefficient induction of virus-neutralizing antibody titers by vaccination. We investigated the effect of vaccination on virus-induced host immune responses and on the outcome of superinfection with Staphylococcus aureus.
Results: Vaccination with trivalent inactivated virus vaccine (TIV) reduced morbidity after influenza A virus infection but did not prevent virus replication completely. Despite the poor induction of influenza-specific antibodies, TIV protected from mortality after bacterial superinfection. Vaccination limited loss of alveolar macrophages and reduced levels of infiltrating pulmonary monocytes after influenza virus infection. Interestingly, TIV vaccination resulted in enhanced levels of eosinophils after influenza virus infection and recruitment of neutrophils in both lungs and mediastinal lymph nodes after bacterial superinfection.
Conclusion: These observations highlight the importance of disease modulation by influenza vaccination, even when suboptimal, and suggest that influenza vaccination is still beneficial to protect during bacterial superinfection in the absence of complete virus neutralization
Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir
Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu) and low (102 pfu) doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines
A bivalent live-attenuated influenza vaccine for the control and prevention of H3N8 and H3N2 canine influenza viruses
Canine influenza viruses (CIVs) cause a contagious respiratory disease in dogs. CIV subtypes include H3N8, which originated from the transfer of H3N8 equine influenza virus (EIV) to dogs; and the H3N2, which is an avian-origin virus adapted to infect dogs. Only inactivated influenza vaccines (IIVs) are currently available against the different CIV subtypes. However, the efficacy of these CIV IIVs is not optimal and improved vaccines are necessary for the efficient prevention of disease caused by CIVs in dogs. Since live-attenuated influenza vaccines (LAIVs) induce better immunogenicity and protection efficacy than IIVs, we have combined our previously described H3N8 and H3N2 CIV LAIVs to create a bivalent vaccine against both CIV subtypes. Our findings show that, in a mouse model of infection, the bivalent CIV LAIV is safe and able to induce, upon a single intranasal immunization, better protection than that induced by a bivalent CIV IIV against subsequent challenge with H3N8 or H3N2 CIVs. These protection results also correlated with the ability of the bivalent CIV LAIV to induce better humoral immune responses. This is the first description of a bivalent LAIV for the control and prevention of H3N8 and H3N2 CIV infections in dogs
Heterologous prime-boost vaccination with H3N2 influenza viruses of swine favors cross-clade antibody responses and protection
The emergence of multiple novel lineages of H1 and H3 influenza A viruses in swine has confounded control by inactivated vaccines. Because of substantial genetic and geographic heterogeneity among circulating swine influenza viruses, one vaccine strain per subtype cannot be efficacious against all of the current lineages. We have performed vaccination-challenge studies in pigs to examine whether priming and booster vaccinations with antigenically distinct H3N2 swine influenza viruses could broaden antibody responses and protection. We prepared monovalent whole inactivated, adjuvanted vaccines based on a European and a North American H3N2 swine influenza virus, which showed 81.5% aa homology in the HA1 region of the hemagglutinin and 83.4% in the neuraminidase. Our data show that (i) Priming with European and boosting with North American H3N2 swine influenza virus induces antibodies and protection against both vaccine strains, unlike prime-boost vaccination with a single virus or a single administration of bivalent vaccine. (ii) The heterologous prime-boost vaccination enhances hemagglutination inhibiting, virus neutralizing and neuraminidase inhibiting antibody responses against H3N2 viruses that are antigenically distinct from both vaccine strains. Antibody titers to the most divergent viruses were higher than after two administrations of bivalent vaccine. (iii) However, it does not induce antibodies to the conserved hemagglutinin stalk or to other hemagglutinin subtypes. We conclude that heterologous prime-boost vaccination might broaden protection to H3N2 swine influenza viruses and reduce the total amount of vaccine needed. This strategy holds potential for vaccination against influenza viruses from both humans and swine and for a better control of (reverse) zoonotic transmission of influenza viruses
A universal influenza mRNA vaccine candidate boosts T cell responses and reduces zoonotic influenza virus disease in ferrets
Universal influenza vaccines should protect against continuously evolving and newly emerging influenza viruses. T cells may be an essential target of such vaccines, as they can clear infected cells through recognition of conserved influenza virus epitopes. We evaluated a novel T cell-inducing nucleoside-modified messenger RNA (mRNA) vaccine that encodes the conserved nucleoprotein, matrix protein 1, and polymerase basic protein 1 of an H1N1 influenza virus. To mimic the human situation, we applied the mRNA vaccine as a prime-boost regimen in naïve ferrets (mimicking young children) and as a booster in influenza-experienced ferrets (mimicking adults). The vaccine induced and boosted broadly reactive T cells in the circulation, bone marrow, and respiratory tract. Booster vaccination enhanced protection against heterosubtypic infection with a potential pandemic H7N9 influenza virus in influenza-experienced ferrets. Our findings show that mRNA vaccines encoding internal influenza virus proteins represent a promising strategy to induce broadly protective T cell immunity against influenza viruses.</p
Viral vector-based influenza vaccines
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors
VIRUS-LIKE PARTICLE VACCINE MANUFACTURING FROM YEAST
Influenza virus has an intrinsic nature to undergo mutations. Hence, there have been struggles to combat this disease since the time when the worst influenza pandemic first hit in 1918. Vaccines have proved to be effective in controlling the spread of the influenza A virus by providing herd immunity. However, the contemporary design of influenza A virus based on egg and cell-culture is not efficient in tackling influenza A virus transformation. Virus-like particles (VLPs) have established themselves as a potental platform for future vaccine candidates. VLPs have all the credentials to supplant contemporary vaccine designs without compromising on immunogenicity. For expression of VLPs, yeast has all the definitive potential to develop new-generation influenza A vaccines. This report describes how to use Hansenula polymorpha, a yeast, to make VLPs of influenza H1N1 virus
- …