25 research outputs found
Camelid reporter gene imaging: a generic method for in vivo cell tracking
BACKGROUND: To combine the sensitivity of bioluminescent imaging (BLI) with the 3D and quantitative properties of pinhole single-photon emission computed tomography (SPECT)/micro-computed tomography (CT) (phSPECT/micro-CT), we generated stable cell lines that express a yellow-fluorescent protein (YFP) and Gaussia luciferase (GLuc) fusion protein (YFP/GLuc). For in vivo phSPECT detection of this YFP/GLuc protein, a nanobody, targeted against yellow and green fluorescent proteins (anti-YFP-Nb), was site specifically labelled with (99m)Tc. METHODS: Human embryonic kidney cells (HEK293T) were cultured and passaged every 3 days. 10E5 cells were transduced with YFP/GLuc-containing vector: both membrane-targeted (MT-YFP/GLuc) and non-targeted (YFP/GLuc) fusion proteins were developed. These vectors were compared against a SKOV-3 cell line stably expressing green fluorescent-firefly luciferase (GFP/Fluc) and HEK293T cells expressing red fluorescent protein in combination with a Gaussia luciferase (Red/GLuc). Transduction efficiencies were scored by fluorescence microscopy, and transduced cells were enriched by fluorescence-activated cell sorting (FACS). GLuc and FLuc functionality was tested in vitro by list-mode BLI. Subsequently, cells were transplanted subcutaneously in athymic (nu/nu) mice (MT-YFP/GLuc: n = 4, YFP/GLuc: n = 6, GFP/FLuc: n = 6, Red/GLuc: n = 4). Labelling efficiency of anti-YFP-Nb was measured using instant thin layer chromatography. One week after transplantation, (99m)Tc-labelled anti-YFP-Nb was injected intravenously and pinhole (ph) SPECT/micro-CT was performed, followed by in vivo BLI. RESULTS: Cells showed high levels of fluorescence after transduction. The cells containing the MT-YFP/GLuc were positive on fluorescence microscopy, with the fluorescent signal confined to the cell membrane. After cell sorting, transduced cells were assayed by BLI and showed a significantly higher light output both in vitro and in vivo compared with non-transduced HEK293T cells. The anti-YFP-Nb labelling efficiency was 98%, and subsequent phSPECT/micro-CT demonstrated visible cell binding and significantly higher transplant-to-muscle ratio for both the MT-YFP/GLuc and YFP/GLuc transplanted cells, compared with the GFP/FLuc and Red/GLuc group. CONCLUSION: This study provides a proof of principle for a nanobody-based cell tracking method, using a YFP/GLuc fusion protein and anti-YFP-Nb in a model of subcutaneously transplanted transduced HEK293T cells
In vivo imaging of the voltage-gated potassium channel Kv10.1 utilizing SPECT in combination with radiolabeled antibodies
Nanobodies as tools to understand, diagnose, and treat African trypanosomiasis
African trypanosomes are strictly extracellular protozoan parasites that cause diseases in humans and livestock and significantly affect the economic development of sub-Saharan Africa. Due to an elaborate and efficient (vector)-parasite-host interplay, required to complete their life cycle/transmission, trypanosomes have evolved efficient immune escape mechanisms that manipulate the entire host immune response. So far, not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. Current therapies, however, exhibit high drug toxicity and an increased drug resistance is being reported. In addition, diagnosis is often hampered due to the inadequacy of current diagnostic procedures. In the context of tackling the shortcomings of current treatment and diagnostic approaches, nanobodies (Nbs, derived from the heavy chain-only antibodies of camels and llamas) might represent unmet advantages compared to conventional tools. Indeed, the combination of their small size, high stability, high affinity, and specificity for their target and tailorability represents a unique advantage, which is reflected by their broad use in basic and clinical research to date. In this article, we will review and discuss (i) diagnostic and therapeutic applications of Nbs that are being evaluated in the context of African trypanosomiasis, (ii) summarize new strategies that are being developed to optimize their potency for advancing their use, and (iii) document on unexpected properties of Nbs, such as inherent trypanolytic activities, that besides opening new therapeutic avenues, might offer new insight in hidden biological activities of conventional antibodies
Recommended from our members
Discovery of nanobodies: a comprehensive review of their applications and potential over the past five years
Nanobodies (Nbs) are antibody fragments derived from heavy-chain-only IgG antibodies found in the Camelidae family as well as cartilaginous fish. Their unique structural and functional properties, such as their small size, the ability to be engineered for high antigen-binding affinity, stability under extreme conditions, and ease of production, have made them promising tools for diagnostics and therapeutics.
This potential was realized in 2018 with the approval of caplacizumab, the world’s first Nb-based drug. Currently, Nbs are being investigated in clinical trials for a broad range of treatments, including targeted therapies against PDL1 and Epidermal Growth Factor Receptor (EGFR), cardiovascular diseases, inflammatory conditions, and neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. They are also being studied for their potential for detecting and imaging autoimmune conditions and infectious diseases such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A variety of methods are now available to generate target-specific Nbs quickly and efficiently at low costs, increasing their accessibility.
This article examines these diverse applications of Nbs and their promising roles. Only the most recent articles published in the last five years have been used to summarize the most advanced developments in the field. Graphical Abstrac
The Development of Single Domain Antibodies for Diagnostic and Therapeutic Applications
Monoclonal antibodies have become increasingly accepted as diagnostics and therapeutics for various human diseases due to their high affinity and specificity. However, several practical drawbacks are apparent for the reagents based on conventional IgG antibodies. With the emergence of antibody engineering, many problems were overcome when the recombinant antibody fragments such as Fabs, scFvs, diabodies and single domain antibodies (sdAbs), are developed. These fragments not only retain the specificity of the whole monoclonal antibodies, but are also easy to express and produce in prokaryotic expression systems. Rather unexpectedly, the natural sdAbs namely VHHs, VNARs and variable lymphocyte receptors (VLRs) that comprise excellent biological activities were recently discovered in camelids, cartilaginous fish and lampreys, respectively. Due to their unique characteristics, including small size, high thermostability, stable folding in the nucleus and cytosol and long CDR3 regions which have access to cavities or clefts on the surface of proteins, these new binders are now investigated extensively as a substitute for conventional antibodies. This review describes the potential of sdAbs selected using in vitro display systems and their use in multiple applications
Humanized CD7 nanobody-based immunotoxins exhibit promising anti-T-cell acute lymphoblastic leukemia potential
Nanobodies as novel agents for disease diagnosis and therapy
The discovery of naturally occurring, heavy-chain only antibodies in Camelidae, and their further development into small recombinant nanobodies, presents attractive alternatives in drug delivery and imaging. Easily expressed in microorganisms and amenable to engineering, nanobody derivatives are soluble, stable, versatile, and have unique refolding capacities, reduced aggregation tendencies, and high-target binding capabilities. This review outlines the current state of the art in nanobodies, focusing on their structural features and properties, production, technology, and the potential for modulating immune functions and for targeting tumors, toxins, and microbes
Current outlook on radionuclide delivery systems: from design consideration to translation into clinics
Radiopharmaceuticals have proven to be effective agents, since they can be successfully applied for both diagnostics and therapy. Effective application of relevant radionuclides in pre-clinical and clinical studies depends on the choice of a sufficient delivery platform. Herein, we provide a comprehensive review on the most relevant aspects in radionuclide delivery using the most employed carrier systems, including, (i) monoclonal antibodies and their fragments, (ii) organic and (iii) inorganic nanoparticles, and (iv) microspheres. This review offers an extensive analysis of radionuclide delivery systems, the approaches of their modification and radiolabeling strategies with the further prospects of their implementation in multimodal imaging and disease curing. Finally, the comparative outlook on the carriers and radionuclide choice, as well as on the targeting efficiency of the developed systems is discussed