79,519 research outputs found
Spirochetal Lipoproteins and Immune Evasion.
Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment
Cancer cell-intrinsic mechanisms driving acquired immune tolerance
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials
Characteristics of Staphylococcus aureus infections to consider in designing an effective vaccine.
_Staphylococcus aureus_ is a very versatile and adaptable microorganism. It can potentially infect virtually any host tissue. Given the appropriate conditions it can become a life-threatening pathogen, or a commensal colonizer of the nose. Extensive antibiotic use for infection control facilitated the rise of antibiotic resistance, stressing the need for alternate forms of control. Vaccine efforts in other pathogens have proved successful, but so far _S. aureus_ candidate vaccines have not been as effective. Here we review _S. aureus_ factors involved in pathogenesis that could help develop a successful vaccine, like host nasal colonization and immune evasion factors. An effective multicomponent vaccine could incorporate antigenic fragments from several _S. aureus_ proteins, preferably involved in colonization, immune evasion and/or toxicity
Immune Evasion Strategies
Leishmania is the causative protozoan parasite of leishmaniasis. Distinct species provoke localized/diffuse cutaneous leishmaniasis or visceral leishmaniasis. Leishmania parasites have developed diverse strategies to evade the host immune response expressed through various cells, especially macrophages, NK cells, and dendritic cells. Participating in some of these strategies are Leishmania surface molecules, such as lipophosphoglycan (LPG) and protease gp63, which are thus considered virulence factors. LPG has been shown to modulate proinflammatory responses. For example, L. major LPG activates NK cells through toll-like receptor-2 (TLR2), while L. mexicana LPG elicits a differential production of cytokines in human dendritic cells and monocytes. Moreover, L. mexicana LPG activates MAP kinases in macrophages, which in turn enhance proinflammatory cytokine production through TLRs. Additionally, Leishmania exosomes have been found to strongly affect macrophage signaling and functions. Furthermore, proteins secreted by Leishmania promastigotes and amastigotes modulate the production of proinflammatory cytokines in human macrophages. Since Leishmania is an obligate intracellular parasite, its promastigotes utilize several mechanisms to survive and duplicate inside host cells, including the inhibition of apoptosis. It is now clear that MAPK p38, JNK, ERK 1/2, and PI3K/Akt participate in the inhibition of both natural and induced apoptosis of macrophages, neutrophils, and dendritic cells
Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity
Virus infection of mammalian cells is sensed by pattern recognition receptors and leads to an innate immune response that restricts virus replication and induces adaptive immunity. In response, viruses have evolved many countermeasures that enable them to replicate and be transmitted to new hosts, despite the host innate immune response. Poxviruses, such as vaccinia virus (VACV), have large DNA genomes and encode many proteins that are dedicated to host immune evasion. Some of these proteins are secreted from the infected cell, where they bind and neutralize complement factors, interferons, cytokines and chemokines. Other VACV proteins function inside cells to inhibit apoptosis or signalling pathways that lead to the production of interferons and pro-inflammatory cytokines and chemokines. In this review, these VACV immunomodulatory proteins are described and the potential to create more immunogenic VACV strains by manipulation of the gene encoding these proteins is discussed
Cytomegalovirus immune evasion sets the functional avidity threshold for protection by CD8 T cells
Conflicting hallmarks are attributed to cytomegalovirus (CMV) infections. CMVs are viewed as being master tacticians in “immune evasion” by subverting essentially all pathways of innate and adaptive immunity. On the other hand, CMV disease is undeniably restricted to the immunologically immature or immunocompromised host, whereas an intact immune system prevents virus spread, cytopathogenic tissue infection, and thus pathological organ manifestations. Therefore, the popular term “immune evasion” is apparently incongruous with the control of CMV infections in the immunocompetent human host as well as in experimental non-human primate and rodent models. Here, we review recent work from the mouse model that resolves this obvious discrepancy for the example of the virus-specific CD8 T-cell response. Immune evasion proteins encoded by murine CMV (mCMV) interfere with the cell surface trafficking of antigenic peptide-loaded MHC class-I (pMHC-I) complexes and thereby reduce their numbers available for interaction with T-cell receptors of CD8 T cells; but this inhibition is incomplete. As a consequence, while CD8 T cells with low interaction avidity fail to receive sufficient signaling for triggering their antiviral effector function in the presence of immune evasion proteins in infected cells, a few pMHC-I complexes that escape to the cell surface are sufficient for sensitizing high-avidity CD8 T cells. It is thus proposed that the function of immune evasion proteins is to raise the avidity threshold for activation, so that in the net result, only high-avidity cells can protect. An example showing that immune evasion proteins can make the difference between life and death is the lacking control of infection in a mouse model of MHC-I histoincompatible hematopoietic cell transplantation (allogeneic-HCT). In this model, only low-avidity CD8 T cells become reconstituted by HCT and almost all infected HCT recipients die of multiple-organ CMV disease when immune evasion proteins are expressed. In contrast, lowering the avidity threshold for antigen recognition by deletion of immune evasion proteins allowed control of infection and rescued from death
Immune evasion in cancer: mechanistic basis and therapeutic strategies
Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through “equilibrium” and “senescence” before re- emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, deregulated metabolism etc. In this review, we will discuss the advances made towards understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection
Immune evasion of the CD1d/NKT cell axis
Many reviews on the CD1d/NKT cell axis focus on the ability of CD1d-restricted NKT cells to serve as effector cells in a variety of disorders, be they infectious diseases, cancer or autoimmunity. In contrast, here, we discuss the ways that viruses, bacteria and tumor cells can evade the CD1d/NKT cell axis. As a result, these disease states have a better chance to establish a foothold and potentially cause problems for the subsequent adaptive immune response, as the host tries to rid itself of infections or tumors
Mechanisms of immune evasion in Epstein-Barr virus infection
The human herpesvirus Epstein-Barr virus (EBV) is a large DNA virus that infects over 90% of the adult world population. EBV is the causative agent of infectious mononucleosis and EBV infection is associated with various malignancies. EBV establishes lifelong infections in immunocompetent hosts. To counteract the host’s immune defence, EBV acquired numerous immune evasion mechanisms. During latency of EBV, viral protein synthesis is limited or absent, making the virus-infected cells virtually invisible to the immune system. Evasion mechanisms of EBV active during primary infection as well as in reactivation are necessary for establishment of latent infection and prolonged replication. Studying viral evasion not only helps to understand EBV, but also the human immune system. Viral molecules interfering with antigen presentation by HLA I and HLA II have been identified previously, but so far, it was unclear how EBV interferes with the lipid antigen-presenting molecule CD1d. The work described in this thesis shows EBV’s mechanism to interfere with cell surface expression of CD1d. Further, a novel immune evasion molecule that obstructs antigen-presentation during the late lytic phase of EBV infection was identified and its working mechanism was unravelled. Understanding viral immune evasion mechanisms may aid in developing therapies for EBV-associated diseases
The essential role of mitochondrial dynamics in antiviral immunity.
Viruses alter cellular physiology and function to establish cellular environment conducive for viral proliferation. Viral immune evasion is an essential aspect of viral persistence and proliferation. The multifaceted mitochondria play a central role in many cellular events such as metabolism, bioenergetics, cell death, and innate immune signaling. Recent findings accentuate that viruses regulate mitochondrial function and dynamics to facilitate viral proliferation. In this review, we will discuss how viruses exploit mitochondrial dynamics to modulate mitochondria-mediated antiviral innate immune response during infection. This review will provide new insight to understanding the virus-mediated alteration of mitochondrial dynamics and functions to perturb host antiviral immune signaling
- …