1,598,165 research outputs found
Immune-system inspired approach for decentralized multi-agent control
This paper contains the first steps towards the development of a fully decentralized system framework. The novel approach that has been taken is derived from the inherent properties of the immune system. An assessment of the proposed control architecture has been performed by comparison with a more typical approach under a search and suppress kind of mission for an unmanned fleet
The Immune System
Modern biotherapy has been in use for some 30 years. The first types of biotherapy were nonspecific stimulators of the immune response, but advances in genetic engineering are allowing the mass production of pure biological products which are now being tested as pharmaceutical agents. Biotherapy connotes the administration of products (1) that are coded by the mammalian genome; (2) that modify the expression of mammalian genes; or (3) that stimulate the immune system. In this chapter the discussion of the immune system will be limited primarily to topics relevant to cancer or autoimmune diseases. Because understanding the new biological agents requires an understanding of both the immune response and the molecular basis of oncogenesis, this chapter first presents a summary of the structure and function of the immune system. Following a discussion of immune responses, and the cells involved in these responses, will be a discussion on the current concepts of oncogenesis, particularly oncogenes and growth factors. Because research efforts are beginning to identify many biological proteins as having a role in autoimmune and other diseases, a brief introduction to autoimmune diseases is also included at the end of the chapter
Immune modulation in gene therapy studies
Summary
Host immune responses play a major role in clearance of viral infections from the body, and may limit long-term expression and clinical efficacy of viral vectors. Methods to prevent these immune responses may also increase the risk for infections, recombination with wild type virus and affect biodistribution, persistence, shedding and transmission. The study described in this report was initiated to assess possible environmental risks associated with the use of immune modulation in combination with
gene therapy and set up as a literature study, by performing
PubMed searches for certain keywords, by interviewing
experts and by attending selected meetings. Lack of
availability of clinical data combining gene therapy and
immune modulation and limited animal data warranted additional exploration of relevant non-gene therapy studies from closely related fields such as stem cell and organ transplantation, and vaccination studies with live attenuated vaccines.
......
Finally, we propose the use of a checklist to assess
current environmental risks in the use of immune modulation
during gene therapy. This report is expected to
provide guidance to risk assessors and regulatory officers
as well as to applicants for a gene therapy licence
Recommended from our members
Cross-genetic determination of maternal and neonatal immune mediators during pregnancy.
BACKGROUND:The immune system plays a fundamental role in development during pregnancy and early life. Alterations in circulating maternal and neonatal immune mediators have been associated with pregnancy complications as well as susceptibility to autoimmune and neurodevelopmental conditions in later life. Evidence suggests that the immune system in adults not only responds to environmental stimulation but is also under strong genetic control. METHODS:This is the first genetic study of > 700 mother-infant pairs to analyse the circulating levels of 22 maternal mid-gestational serum-derived and 42 neonatal bloodspot-derived immune mediators (cytokines/chemokines) in the context of maternal and fetal genotype. We first estimated the maternal and fetal genome-wide SNP-based heritability (h2g) for each immune molecule and then performed genome-wide association studies (GWAS) to identify specific loci contributing to individual immune mediators. Finally, we assessed the relationship between genetic immune determinants and ASD outcome. RESULTS:We show maternal and neonatal cytokines/chemokines displaying genetic regulation using independent methodologies. We demonstrate that novel fetal loci for immune function independently affect the physiological levels of maternal immune mediators and vice versa. The cross-associated loci are in distinct genomic regions compared with individual-specific immune mediator loci. Finally, we observed an interaction between increased IL-8 levels at birth, autism spectrum disorder (ASD) status, and a specific maternal genotype. CONCLUSIONS:Our results suggest that maternal and fetal genetic variation influences the immune system during pregnancy and at birth via distinct mechanisms and that a better understanding of immune factor determinants in early development may shed light on risk factors for developmental disorders
Increasing Endurance of an Autonomous Robot using an Immune-Inspired Framework
This paper describes the implementation of an online immune-inspired framework to help increase endurance of an autonomous robot. Endurance is defined as the ability of the robot to exert itself for a long period of time. The immune-inspired framework provides such capability by monitoring the behavior of the robot to ensure continuous and safe behavior. The immune-inspired framework combines innate and adaptive immune inspired algorithms. Innate uses a dendritic cell based innate immune algorithm, and adaptive uses an instance based B-cell approach. Results presented in this paper shows that when the robot is implemented with the immune-inspired framework, health and survivability of a robot is improved, therefore increasing its endurance
Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires
The adaptive immune system recognizes antigens via an immense array of
antigen-binding antibodies and T-cell receptors, the immune repertoire. The
interrogation of immune repertoires is of high relevance for understanding the
adaptive immune response in disease and infection (e.g., autoimmunity, cancer,
HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the
quantitative and molecular-level profiling of immune repertoires thereby
revealing the high-dimensional complexity of the immune receptor sequence
landscape. Several methods for the computational and statistical analysis of
large-scale AIRR-seq data have been developed to resolve immune repertoire
complexity in order to understand the dynamics of adaptive immunity. Here, we
review the current research on (i) diversity, (ii) clustering and network,
(iii) phylogenetic and (iv) machine learning methods applied to dissect,
quantify and compare the architecture, evolution, and specificity of immune
repertoires. We summarize outstanding questions in computational immunology and
propose future directions for systems immunology towards coupling AIRR-seq with
the computational discovery of immunotherapeutics, vaccines, and
immunodiagnostics.Comment: 27 pages, 2 figure
- …