141,871 research outputs found
Analysis of Various Classification Techniques for Computer Aided Detection System of Pulmonary Nodules in CT
Lung cancer is the leading cause of cancer death in the United States. It usually exhibits its presence with the formation of pulmonary nodules. Nodules are round or oval-shaped growth present in the lung. Computed Tomography (CT) scans are used by radiologists to detect such nodules. Computer Aided Detection (CAD) of such nodules would aid in providing a second opinion to the radiologists and would be of valuable help in lung cancer screening. In this research, we study various feature selection methods for the CAD system framework proposed in FlyerScan. Algorithmic steps of FlyerScan include (i) local contrast enhancement (ii) automated anatomical segmentation (iii) detection of potential nodule candidates (iv) feature computation & selection and (v) candidate classification. In this paper, we study the performance of the FlyerScan by implementing various classification methods such as linear, quadratic and Fischer linear discriminant classifier. This algorithm is implemented using a publicly available Lung Image Database Consortium – Image Database Resource Initiative (LIDC-IDRI) dataset. 107 cases from LIDC-IDRI are handpicked in particular for this paper and performance of the CAD system is studied based on 5 example cases of Automatic Nodule Detection (ANODE09) database. This research will aid in improving the nodule detection rate in CT scans, thereby enhancing a patient’s chance of survival
Segmentation of Pulmonary Nodules in Computed Tomography Using a Regression Neural Network Approach and Its Application to the Lung Image Database Consortium and Image Database Resource Initiative Dataset
We present new pulmonary nodule segmentation algorithms for computed tomography (CT). These include a fully-automated (FA) system, a semi-automated (SA) system, and a hybrid system. Like most traditional systems, the new FA system requires only a single user-supplied cue point. On the other hand, the SA system represents a new algorithm class requiring 8 user-supplied control points. This does increase the burden on the user, but we show that the resulting system is highly robust and can handle a variety of challenging cases. The proposed hybrid system starts with the FA system. If improved segmentation results are needed, the SA system is then deployed. The FA segmentation engine has 2 free parameters, and the SA system has 3. These parameters are adaptively determined for each nodule in a search process guided by a regression neural network (RNN). The RNN uses a number of features computed for each candidate segmentation. We train and test our systems using the new Lung Image Database Consortium and Image Database Resource Initiative (LIDC–IDRI) data. To the best of our knowledge, this is one of the first nodule-specific performance benchmarks using the new LIDC–IDRI dataset. We also compare the performance of the proposed methods with several previously reported results on the same data used by those other methods. Our results suggest that the proposed FA system improves upon the state-of-the-art, and the SA system offers a considerable boost over the FA system
Segmentation of Pulmonary Nodules in Computed Tomography using a Regression Neural Network Approach and its Application to the Lung Image Database Consortium and Image Database Resource Initiative Dataset
We present new pulmonary nodule segmentation algorithms for computed tomography (CT). These include a fully-automated (FA) system, a semi-automated (SA) system, and a hybrid system. Like most traditional systems, the new FA system requires only a single user-supplied cue point. On the other hand, the SA system represents a new algorithm class requiring 8 user-supplied control points. This does increase the burden on the user, but we show that the resulting system is highly robust and can handle a variety of challenging cases. The proposed hybrid system starts with the FA system.
If improved segmentation results are needed, the SA system is then deployed. The FA segmentation engine has 2 free parameters, and the SA system has 3. These parameters are adaptively determined for each nodule in a search process guided by a regression neural network (RNN). The RNN uses a number of features computed for each candidate segmentation. We train and test our systems using the new Lung Image Database Consortium and Image Database Resource Initiative (LIDC–IDRI) data. To the best of our knowledge, this is one of the first nodule-specific performance benchmarks using the new LIDC–IDRI dataset. We also compare the performance of the proposed methods with several previously reported results on the same data used by those other methods. Our results suggest that the proposed FA system improves upon the state-of-the-art, and the SA system offers a considerable boost over the FA system
Segmentation of Pulmonary Nodules in Computed Tomography using a Regression Neural Network Approach and its Application to the Lung Image Database Consortium and Image Database Resource Initiative Dataset
We present new pulmonary nodule segmentation algorithms for computed tomography (CT). These include a fully-automated (FA) system, a semi-automated (SA) system, and a hybrid system. Like most traditional systems, the new FA system requires only a single user-supplied cue point. On the other hand, the SA system represents a new algorithm class requiring 8 user-supplied control points. This does increase the burden on the user, but we show that the resulting system is highly robust and can handle a variety of challenging cases. The proposed hybrid system starts with the FA system.
If improved segmentation results are needed, the SA system is then deployed. The FA segmentation engine has 2 free parameters, and the SA system has 3. These parameters are adaptively determined for each nodule in a search process guided by a regression neural network (RNN). The RNN uses a number of features computed for each candidate segmentation. We train and test our systems using the new Lung Image Database Consortium and Image Database Resource Initiative (LIDC–IDRI) data. To the best of our knowledge, this is one of the first nodule-specific performance benchmarks using the new LIDC–IDRI dataset. We also compare the performance of the proposed methods with several previously reported results on the same data used by those other methods. Our results suggest that the proposed FA system improves upon the state-of-the-art, and the SA system offers a considerable boost over the FA system
Multi-view convolutional recurrent neural networks for lung cancer nodule identification
Screening via low-dose Computer Tomography (CT) has been shown to reduce lung cancer mortality rates by at least 20%. However, the assessment of large numbers of CT scans by radiologists is cost intensive, and potentially produces varying and inconsistent results for differing radiologists (and also for temporally-separated assessments by the same radiologist). To overcome these challenges, computer aided diagnosis systems based on deep learning methods have proved an effective in automatic detection and classification of lung cancer.
Latterly, interest has focused on the full utilization of the 3D information in CT scans using 3D-CNNs and related approaches. However, such approaches do not intrinsically correlate size and shape information between slices. In this work, an innovative approach to Multi-view Convolutional Recurrent Neural Networks (MV-CRecNet) is proposed that exploits shape, size and cross-slice variations while learning to identify lung cancer nodules from CT scans. The multiple-views that are passed to the model ensure better generalization and the learning of robust features.
We evaluate the proposed MV-CRecNet model on the reference Lung Image Database Consortium and Image Database Resource Initiative and Early Lung Cancer Action Program datasets; six evaluation metrics are applied to eleven comparison models for testing. Results demonstrate that proposed methodology outperforms all of the models against all of the evaluation metrics
Interoperability between Multimedia Collections for Content and Metadata-Based Searching
Artiste is a European project developing a cross-collection search system for art galleries and museums. It combines image content retrieval with text based retrieval and uses RDF mappings in order to integrate diverse databases. The test sites of the Louvre, Victoria and Albert Museum, Uffizi Gallery and National Gallery London provide their own database schema for existing metadata, avoiding the need for migration to a common schema. The system will accept a query based on one museum’s fields and convert them, through an RDF mapping into a form suitable for querying the other collections. The nature of some of the image processing algorithms means that the system can be slow for some computations, so the system is session-based to allow the user to return to the results later. The system has been built within a J2EE/EJB framework, using the Jboss Enterprise Application Server
1st INCF Workshop on Sustainability of Neuroscience Databases
The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability
Neuroimaging study designs, computational analyses and data provenance using the LONI pipeline.
Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges--management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu
- …