34,661 research outputs found

    Cova de Can Sadurní, la transformació d’un jaciment. L’episodi sepulcral del neolític postcardial

    Get PDF
    The present study deals with the structural characterization and classification of the novel compounds <b>1</b>–<b>8</b> into perovskite subclasses and proceeds in extracting the structure–band gap relationships between them. The compounds were obtained from the employment of small, 3–5-atom-wide organic ammonium ions seeking to discover new perovskite-like compounds. The compounds reported here adopt unique or rare structure types akin to the prototype structure perovskite. When trimethylammonium (TMA) was employed, we obtained TMASnI<sub>3</sub> (<b>1</b>), which is our reference compound for a “perovskitoid” structure of face-sharing octahedra. The compounds EASnI<sub>3</sub> (<b>2b</b>), GASnI<sub>3</sub> (<b>3a</b>), ACASnI<sub>3</sub> (<b>4</b>), and IMSnI<sub>3</sub> (<b>5</b>) obtained from the use of ethylammonium (EA), guanidinium (GA), acetamidinium (ACA), and imidazolium (IM) cations, respectively, represent the first entries of the so-called “hexagonal perovskite polytypes” in the hybrid halide perovskite library. The hexagonal perovskites define a new family of hybrid halide perovskites with a crystal structure that emerges from a blend of corner- and face-sharing octahedral connections in various proportions. The small organic cations can also stabilize a second structural type characterized by a crystal lattice with reduced dimensionality. These compounds include the two-dimensional (2D) perovskites GA<sub>2</sub>SnI<sub>4</sub> (<b>3b</b>) and IPA<sub>3</sub>Sn<sub>2</sub>I<sub>7</sub> (<b>6b</b>) and the one-dimensional (1D) perovskite IPA<sub>3</sub>SnI<sub>5</sub> (<b>6a</b>). The known 2D perovskite BA<sub>2</sub>MASn<sub>2</sub>I<sub>7</sub> (<b>7</b>) and the related all-inorganic 1D perovskite “RbSnF<sub>2</sub>I” (<b>8</b>) have also been synthesized. All compounds have been identified as medium-to-wide-band-gap semiconductors in the range of <i>E</i><sub>g</sub> = 1.90–2.40 eV, with the band gap progressively decreasing with increased corner-sharing functionality and increased torsion angle in the octahedral connectivity

    Isopropyl alcohol recovery by heteroazeotropic batch distillation

    Get PDF
    Solvent recovery is becoming a major issue in the pharmaceutical and specialty chemical industries. Solvent recovery by conventional batch distillation is limited by the frequent presence of azeotropes in the used solvent mixtures. Most distillation processes for the separation of azeotropic or difficult zeotropic mixtures involve the addition of an entrainer (homogeneous and heterogeneous azeotropic distillation or extractive distillation). In this study the recovery of IPA (isopropyl alcohol) from an industrial waste stream (IPA/water mixture) was studied by conventional batch distillation and heteroazeotropic batch distillation, using cyclohexane as entrainer. First the ternary IPA/water/cyclohexane azeotrope (boiling temperature of 64.1 °C), then the binary IPA/cyclohexane azeotrope (boiling temperature of 69.3°C) and finally pure IPA was distilled. 99.96 mass% IPA could be obtained by heteroazeotropic distillation, using cyclohexane as entrainer. By using this procedure the IPA recovery is 97.6%, which is high compared to the conventional distillation techniques. The binary azeotrope could be reused in a subsequent heteroazeotropic batch distillation

    Highly sensitive fiber Bragg grating refractive index sensors

    Get PDF
    We combine fiber Bragg grating (FBG) technology with a wet chemical etch-erosion procedure and demonstrate two types of refractive index sensors using single-mode optical fibers. The first index sensor device is an etch-eroded single FBG with a radius of 3 ÎĽm, which is used to measure the indices of four different liquids. The second index sensor device is an etch-eroded fiber Fabry-Perot interferometer (FFPI) with a radius of ~1.5 ÎĽm and is used to measure the refractive indices of isopropyl alcohol solutions of different concentrations. Due to its narrower resonance spectral feature, the FFPI sensor has a higher sensitivity than the FBG sensor and can detect an index variation of 1.4 X 10(-5). Since we can measure the reflection signal, these two types of sensors can be fabricated at the end of a fiber and used as point sensors

    Approximate IPA: Trading Unbiasedness for Simplicity

    Full text link
    When Perturbation Analysis (PA) yields unbiased sensitivity estimators for expected-value performance functions in discrete event dynamic systems, it can be used for performance optimization of those functions. However, when PA is known to be unbiased, the complexity of its estimators often does not scale with the system's size. The purpose of this paper is to suggest an alternative approach to optimization which balances precision with computing efforts by trading off complicated, unbiased PA estimators for simple, biased approximate estimators. Furthermore, we provide guidelines for developing such estimators, that are largely based on the Stochastic Flow Modeling framework. We suggest that if the relative error (or bias) is not too large, then optimization algorithms such as stochastic approximation converge to a (local) minimum just like in the case where no approximation is used. We apply this approach to an example of balancing loss with buffer-cost in a finite-buffer queue, and prove a crucial upper bound on the relative error. This paper presents the initial study of the proposed approach, and we believe that if the idea gains traction then it may lead to a significant expansion of the scope of PA in optimization of discrete event systems.Comment: 8 pages, 8 figure

    Optimal Event-Driven Multi-Agent Persistent Monitoring of a Finite Set of Targets

    Full text link
    We consider the problem of controlling the movement of multiple cooperating agents so as to minimize an uncertainty metric associated with a finite number of targets. In a one-dimensional mission space, we adopt an optimal control framework and show that the solution is reduced to a simpler parametric optimization problem: determining a sequence of locations where each agent may dwell for a finite amount of time and then switch direction. This amounts to a hybrid system which we analyze using Infinitesimal Perturbation Analysis (IPA) to obtain a complete on-line solution through an event-driven gradient-based algorithm which is also robust with respect to the uncertainty model used. The resulting controller depends on observing the events required to excite the gradient-based algorithm, which cannot be guaranteed. We solve this problem by proposing a new metric for the objective function which creates a potential field guaranteeing that gradient values are non-zero. This approach is compared to an alternative graph-based task scheduling algorithm for determining an optimal sequence of target visits. Simulation examples are included to demonstrate the proposed methods.Comment: 12 pages full version, IEEE Conference on Decision and Control, 201

    Influence of reaction conditions on the properties of solution-processed Cu2ZnSnS4 nanocrystals

    Get PDF
    Cu2ZnSnS4 nanocrystals were fabricated by hot injection of sulphur into a solution of metallic precursors. By careful control of the reaction conditions it was possible to control the elemental composition of the nanocrystals such that they are suitable for earth abundant photovoltaic absorbers. When the reaction temperature increased from 195 oC to 240 oC the energy band gap of the nanocrystals decreased from 1.65 eV to 1.39 eV. This variation is explained by the identification of a mixed wurtzite-kesterite phase at lower reaction temperatures and secondary phase Cu2SnS3 at higher temperatures. Moreover, the existence of wurtzite structure depends critically on the reaction cooling rate. The reaction time was also found to have a strong effect on the nanocrystals which became increasingly copper poor and zinc rich as the reaction evolved. As the reaction time increase from 15 minutes to 60 minutes, the energy band gap increased from 1.42 eV to 1.84 eV. This variation is discussed in terms of the sample doping. The results demonstrate the importance of optimising the reaction conditions to produce high quality Cu2ZnSnS4 nanocrystals
    • …
    corecore