34,661 research outputs found
Cova de Can SadurnĂ, la transformaciĂł d’un jaciment. L’episodi sepulcral del neolĂtic postcardial
The
present study deals with the structural characterization and classification
of the novel compounds <b>1</b>–<b>8</b> into perovskite
subclasses and proceeds in extracting the structure–band gap
relationships between them. The compounds were obtained from the employment
of small, 3–5-atom-wide organic ammonium ions seeking to discover
new perovskite-like compounds. The compounds reported here adopt unique
or rare structure types akin to the prototype structure perovskite.
When trimethylammonium (TMA) was employed, we obtained TMASnI<sub>3</sub> (<b>1</b>), which is our reference compound for a “perovskitoid”
structure of face-sharing octahedra. The compounds EASnI<sub>3</sub> (<b>2b</b>), GASnI<sub>3</sub> (<b>3a</b>), ACASnI<sub>3</sub> (<b>4</b>), and IMSnI<sub>3</sub> (<b>5</b>)
obtained from the use of ethylammonium (EA), guanidinium (GA), acetamidinium
(ACA), and imidazolium (IM) cations, respectively, represent the first
entries of the so-called “hexagonal perovskite polytypes”
in the hybrid halide perovskite library. The hexagonal perovskites
define a new family of hybrid halide perovskites with a crystal structure
that emerges from a blend of corner- and face-sharing octahedral connections
in various proportions. The small organic cations can also stabilize
a second structural type characterized by a crystal lattice with reduced
dimensionality. These compounds include the two-dimensional (2D) perovskites
GA<sub>2</sub>SnI<sub>4</sub> (<b>3b</b>) and IPA<sub>3</sub>Sn<sub>2</sub>I<sub>7</sub> (<b>6b</b>) and the one-dimensional
(1D) perovskite IPA<sub>3</sub>SnI<sub>5</sub> (<b>6a</b>).
The known 2D perovskite BA<sub>2</sub>MASn<sub>2</sub>I<sub>7</sub> (<b>7</b>) and the related all-inorganic 1D perovskite “RbSnF<sub>2</sub>I” (<b>8</b>) have also been synthesized. All
compounds have been identified as medium-to-wide-band-gap semiconductors
in the range of <i>E</i><sub>g</sub> = 1.90–2.40
eV, with the band gap progressively decreasing with increased corner-sharing
functionality and increased torsion angle in the octahedral connectivity
Isopropyl alcohol recovery by heteroazeotropic batch distillation
Solvent recovery is becoming a major issue in the pharmaceutical and specialty chemical industries. Solvent recovery by conventional batch distillation is limited by the frequent presence of azeotropes in the used solvent mixtures. Most distillation processes for the separation of azeotropic or difficult zeotropic mixtures involve the addition of an entrainer (homogeneous and heterogeneous azeotropic distillation or extractive distillation).
In this study the recovery of IPA (isopropyl alcohol) from an industrial waste stream (IPA/water mixture) was studied by conventional batch distillation and heteroazeotropic batch distillation, using cyclohexane as entrainer. First the ternary IPA/water/cyclohexane azeotrope (boiling temperature of 64.1 °C), then the binary IPA/cyclohexane azeotrope (boiling temperature of 69.3°C) and finally pure IPA was distilled.
99.96 mass% IPA could be obtained by heteroazeotropic distillation, using cyclohexane as entrainer. By using this procedure the IPA recovery is 97.6%, which is high compared to the conventional distillation techniques. The binary azeotrope could be reused in a subsequent heteroazeotropic batch distillation
Highly sensitive fiber Bragg grating refractive index sensors
We combine fiber Bragg grating (FBG) technology with a wet chemical etch-erosion procedure and demonstrate two types of refractive index sensors using single-mode optical fibers. The first index sensor device is an etch-eroded single FBG with a radius of 3 ÎĽm, which is used to measure the indices of four different liquids. The second index sensor device is an etch-eroded fiber Fabry-Perot interferometer (FFPI) with a radius of ~1.5 ÎĽm and is used to measure the refractive indices of isopropyl alcohol solutions of different concentrations. Due to its narrower resonance spectral feature, the FFPI sensor has a higher sensitivity than the FBG sensor and can detect an index variation of 1.4 X 10(-5). Since we can measure the reflection signal, these two types of sensors can be fabricated at the end of a fiber and used as point sensors
Approximate IPA: Trading Unbiasedness for Simplicity
When Perturbation Analysis (PA) yields unbiased sensitivity estimators for
expected-value performance functions in discrete event dynamic systems, it can
be used for performance optimization of those functions. However, when PA is
known to be unbiased, the complexity of its estimators often does not scale
with the system's size. The purpose of this paper is to suggest an alternative
approach to optimization which balances precision with computing efforts by
trading off complicated, unbiased PA estimators for simple, biased approximate
estimators. Furthermore, we provide guidelines for developing such estimators,
that are largely based on the Stochastic Flow Modeling framework. We suggest
that if the relative error (or bias) is not too large, then optimization
algorithms such as stochastic approximation converge to a (local) minimum just
like in the case where no approximation is used. We apply this approach to an
example of balancing loss with buffer-cost in a finite-buffer queue, and prove
a crucial upper bound on the relative error. This paper presents the initial
study of the proposed approach, and we believe that if the idea gains traction
then it may lead to a significant expansion of the scope of PA in optimization
of discrete event systems.Comment: 8 pages, 8 figure
Optimal Event-Driven Multi-Agent Persistent Monitoring of a Finite Set of Targets
We consider the problem of controlling the movement of multiple cooperating
agents so as to minimize an uncertainty metric associated with a finite number
of targets. In a one-dimensional mission space, we adopt an optimal control
framework and show that the solution is reduced to a simpler parametric
optimization problem: determining a sequence of locations where each agent may
dwell for a finite amount of time and then switch direction. This amounts to a
hybrid system which we analyze using Infinitesimal Perturbation Analysis (IPA)
to obtain a complete on-line solution through an event-driven gradient-based
algorithm which is also robust with respect to the uncertainty model used. The
resulting controller depends on observing the events required to excite the
gradient-based algorithm, which cannot be guaranteed. We solve this problem by
proposing a new metric for the objective function which creates a potential
field guaranteeing that gradient values are non-zero. This approach is compared
to an alternative graph-based task scheduling algorithm for determining an
optimal sequence of target visits. Simulation examples are included to
demonstrate the proposed methods.Comment: 12 pages full version, IEEE Conference on Decision and Control, 201
Influence of reaction conditions on the properties of solution-processed Cu2ZnSnS4 nanocrystals
Cu2ZnSnS4 nanocrystals were fabricated by hot injection of sulphur into a solution of metallic precursors. By careful control of the reaction conditions it was possible to control the elemental composition of the nanocrystals such that they are suitable for earth abundant photovoltaic absorbers. When the reaction temperature increased from 195 oC to 240 oC the energy band gap of the nanocrystals decreased from 1.65 eV to 1.39 eV. This variation is explained by the identification of a mixed wurtzite-kesterite phase at lower reaction temperatures and secondary phase Cu2SnS3 at higher temperatures. Moreover, the existence of wurtzite structure depends critically on the reaction cooling rate. The reaction time was also found to have a strong effect on the nanocrystals which became increasingly copper poor and zinc rich as the reaction evolved. As the reaction time increase from 15 minutes to 60 minutes, the energy band gap increased from 1.42 eV to 1.84 eV. This variation is discussed in terms of the sample doping. The results demonstrate the importance of optimising the reaction conditions to produce high quality Cu2ZnSnS4 nanocrystals
- …