399 research outputs found

    Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-Forming Regions

    Full text link
    We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available highresolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4.'5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the Spectral Energy Distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21-cm radio continuum and 12CO molecular line emission. The restored extended large scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power Young Stellar Objects (YSOs). Further evidence for starless clumps has also been found in the IC 5146 region.Comment: 13 pages, 12 Figures, 3 Table

    Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-forming Regions

    Get PDF
    We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4'.5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and ^(12)CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region

    Molecular Excitation and Differential Gas-Phase Depletions in the IC 5146 Dark Cloud

    Get PDF
    We present a combined near-infrared and molecular-line study of 25' x 8' area in the Northern streamer of the IC 5146 cloud. Using the technique pioneered by Lada et al 1994, we construct a Gaussian smoothed map of the infrared extinction with the same resolution as the molecular line observations in order to examine correlations of integrated intensities and molecular abundances with extinction for C17O, C34S, and N2H+. We find that over a visual extinction range of 0 to 40 magnitudes, there is good evidence for the presence of differential gas-phase depletions in the densest portions of IC 5146. Both CO and CS exhibit a statistically significant (factor of ~3) abundance reduction near Av ~ 12 magnitudes while, in direct contrast, at the highest extinctions, Av > 10 magnitudes, N2H+ appears relatively undepleted. Moreover, for Av < 4 magnitudes there exists little or no N2H+. This pattern of depletions is consistent with the predictions of chemical theory.Comment: 36 pages (13 figures), accepted by the Astrophysical Journa

    Ices in the Quiescent IC 5146 Dense Cloud

    Get PDF
    This paper presents spectra in the 2 to 20 micron range of quiescent cloud material located in the IC 5146 cloud complex. The spectra were obtained with NASA's Infrared Telescope Facility (IRTF) SpeX instrument and the Spitzer Space Telescope's Infrared Spectrometer. We use these spectra to investigate dust and ice absorption features in pristine regions of the cloud that are unaltered by embedded stars. We find that the H2O-ice threshold extinction is 4.03+/-0.05 mag. Once foreground extinction is taken into account, however, the threshold drops to 3.2 mag, equivalent to that found for the Taurus dark cloud, generally assumed to be the touchstone quiescent cloud against which all other dense cloud and embedded young stellar object observations are compared. Substructure in the trough of the silicate band for two sources is attributed to CH3OH and NH3 in the ices, present at the ~2% and ~5% levels, respectively, relative to H2O-ice. The correlation of the silicate feature with the E(J-K) color excess is found to follow a much shallower slope relative to lines of sight that probe diffuse clouds, supporting the previous results by Chiar et al. (2007).Comment: 13 pages, 13 figures with multiple parts, accepted for publication in Astrophysical Journal, Feb. 201

    X-ray Emission from the FU Orionis Star V1735 Cygni

    Full text link
    The variable star V1735 Cyg (= Elias 1-12) lies in the IC 5146 dark cloud and is a member of the class of FU Orionis objects whose dramatic optical brightenings are thought to be linked to episodic accretion. We report the first X-ray detections of V1735 Cyg and a deeply-embedded class I protostar lying 24 arcsecs to its northeast. X-ray spectra obtained with EPIC on XMM-Newton reveal very high-temperature plasma (kT > 5 keV) in both objects, but no large flares. Such hard X-ray emission is not anticipated from accretion shocks and is a signature of magnetic processes. We place these new results into the context of what is presently known about the X-ray properties of FU Orionis stars and other accreting young stellar objects.Comment: 25 pages, 6 figure

    Multiwavelength polarimetry of the filamentary cloud IC 5146. II. Magnetic field structures

    Full text link
    The IC 5146 cloud is a nearby star-forming region in Cygnus, consisting of molecular gas filaments in a variety of evolutionary stages. We used optical and near-infrared polarization data toward the IC 5146 cloud, reported in the first paper of this series, to reveal the magnetic fields in this cloud. Using the newly released Gaia data, we found that the IC 5146 cloud may contain two separate clouds: a first cloud, including the densest main filament at a distance of∌600 pc, and a second cloud, associated with the Cocoon Nebula at a distance of∌800 pc. The spatially averaged H-band polarization map revealed a well-ordered magnetic field morphology, with the polarization segments perpendicular to the main filament but parallel to the nearby sub filaments, consistent with models assuming that the magnetic field is regulating cloud evolution. We estimated the magnetic field strength using the Davis–Chandrasekhar–Fermi method and found that the magnetic field strength scales with volume density with a power-law index of∌0.5 in the density range from N_H2 ∌ 10 to 3000 cm_−3, which indicates an an isotropic cloud contraction with a preferred direction along the magnetic field. In addition, the mass-to-flux ratio of the cloud gradually changes from subcritical to supercritical from the cloud envelope to the deep regions. These features are consistent with strong magnetic field star formation models and suggest that the magnetic field is important in regulating the evolution of the IC 5146 cloud.Accepted manuscript and published version

    The Relationship between the Optical Depth of the 9.7 micron Silicate Absorption Feature and Infrared Differential Extinction in Dense Clouds

    Get PDF
    We have examined the relationship between the optical depth of the 9.7 micron silicate absorption feature (tau_9.7) and the near-infrared color excess, E(J-Ks) in the Serpens, Taurus, IC 5146, Chameleon I, Barnard 59, and Barnard 68 dense clouds/cores. Our data set, based largely on Spitzer IRS spectra, spans E(J-Ks)=0.3 to 10 mag (corresponding to visual extinction between about 2 and 60 mag.). All lines of sight show the 9.7 micron silicate feature. Unlike in the diffuse ISM where a tight linear correlation between the 9.7 micron silicate feature optical depth and the extinction (Av) is observed, we find that the silicate feature in dense clouds does not show a monotonic increase with extinction. Thus, in dense clouds, tau_9.7 is not a good measure of total dust column density. With few exceptions, the measured tau_9.7 values fall well below the diffuse ISM correlation line for E(J-Ks) > 2 mag (Av >12 mag). Grain growth via coagulation is a likely cause of this effect.Comment: 11 pages including 2 figures, 1 table. Accepted for publication in ApJ Letters, 23 July 200
    • 

    corecore