171,335 research outputs found

    Class I dependence of the development of CD4+ CD8- NK1.1+ thymocytes.

    Get PDF
    A small subset of functionally active CD4+ CD8- thymocytes express the NK1.1 marker, as do most CD4-CD8- NK1.1+ thymocytes. Previous studies have failed to implicate a role for major histocompatibility complex (MHC) or related molecules in the selection of the CD4+ CD8- NK1.1+ subset. We report here that the development of most of these cells is sharply reduced in class I-deficient mice, but not in class II-deficient mice. Hence, some CD4+ T cells are class I dependent and not class II dependent. Unlike conventional T cells, however, the development of NK1.1+ thymocytes in both the CD4+ CD8- and CD4- CD8- subsets is dependent on class I MHC expression by hematopoietic cells and not thymic epithelial cells. We propose that these populations are selected by nonpolymorphic class Ib or CD1 molecules

    Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously sequenced more than 500 kb of the duplicated MHC class I regions in Atlantic salmon. In the IA region we identified the loci for the MHC class I gene <it>Sasa-UBA </it>in addition to a soluble MHC class I molecule, <it>Sasa-ULA</it>. A pseudolocus for <it>Sasa-UCA </it>was identified in the nonclassical IB region. Both regions contained genes for antigen presentation, as wells as orthologues to other genes residing in the human MHC region.</p> <p>Results</p> <p>The genomic localisation of two MHC class I lineages (Z and S) has been resolved. 7 BACs were sequenced using a combination of standard Sanger and 454 sequencing. The new sequence data extended the IA region with 150 kb identifying the location of one Z-lineage locus, <it>ZAA</it>. The IB region was extended with 350 kb including three new Z-lineage loci, <it>ZBA</it>, <it>ZCA </it>and <it>ZDA </it>in addition to a <it>UGA </it>locus. An allelic version of the IB region contained a functional <it>UDA </it>locus in addition to the <it>UCA </it>pseudolocus. Additionally a BAC harbouring two MHC class I genes (UHA) was placed on linkage group 14, while a BAC containing the S-lineage locus <it>SAA </it>(previously known as <it>UAA</it>) was placed on LG10. Gene expression studies showed limited expression range for all class I genes with exception of <it>UBA </it>being dominantly expressed in gut, spleen and gills, and <it>ZAA </it>with high expression in blood.</p> <p>Conclusion</p> <p>Here we describe the genomic organization of MHC class I loci from the U-, Z-, and S-lineages in Atlantic salmon. Nine of the described class I genes are located in the extension of the duplicated IA and IB regions, while three class I genes are found on two separate linkage groups. The gene organization of the two regions indicates that the IB region is evolving at a different pace than the IA region. Expression profiling, polymorphic content, peptide binding properties and phylogenetic relationship show that Atlantic salmon has only one MHC class Ia gene (<it>UBA</it>), in addition to a multitude of nonclassical MHC class I genes from the U-, S- and Z-lineages.</p

    Positive selection of V beta 8+ CD4-8- thymocytes by class I molecules expressed by hematopoietic cells.

    Get PDF
    A small subset of T cells of mature phenotype express the alpha/beta T cell receptor, but not CD4 and CD8 coreceptors (alpha/beta double-negative [DN] cells). The repertoire of V beta usage of alpha/beta DN cells is strongly biased towards V beta 8 expression, suggesting that the formation of the population is subject to selection. We now report that deficiency of class I expression leads to a strongly depressed frequency of V beta 8+ DN cells, but has little effect on V beta 8- DN cells. Studies of hematopoietic chimeras between class I+ and class I- mice demonstrated that expression of class I molecules by hematopoietic cells is necessary and sufficient for selection of most V beta 8 DN cells. The lack of a role for class I expression by thymic epithelial cells suggests that the mechanism of selection of these cells by class I differs significantly from the mechanism of selection of conventional T cells. Models to explain the selection of these cells as well as their possible function in vivo are discussed

    Genomic Organization of Duplicated Major Histocompatibility Complex Class I Regions in Atlantic Salmon (Salmo Salar)

    Get PDF
    Background: We have previously identified associations between major histocompatibility complex(MHC) class I and resistance towards bacterial and viral pathogens in Atlantic salmon. To evaluate if onlyMHC or also closely linked genes contributed to the observed resistance we ventured into sequencing ofthe duplicated MHC class I regions of Atlantic salmon.Results: Nine BACs covering more than 500 kb of the two duplicated MHC class I regions of Atlanticsalmon were sequenced and the gene organizations characterized. Both regions contained the proteasomecomponents PSMB8, PSMB9, PSMB9-like and PSMB10 in addition to the transporter for antigen processingTAP2, as well as genes for KIFC1, ZBTB22, DAXX, TAPBP, BRD2, COL11A2, RXRB and SLC39A7. TheIA region contained the recently reported MHC class I Sasa-ULA locus residing approximately 50 kbupstream of the major Sasa-UBA locus. The duplicated class IB region contained an MHC class I locusresembling the rainbow trout UCA locus, but although transcribed it was a pseudogene. No other MHCclass I-like genes were detected in the two duplicated regions. Two allelic BACs spanning the UBA locushad 99.2% identity over 125 kb, while the IA region showed 82.5% identity over 136 kb to the IB region.The Atlantic salmon IB region had an insert of 220 kb in comparison to the IA region containing threechitin synthase genes.Conclusion: We have characterized the gene organization of more than 500 kb of the two duplicatedMHC class I regions in Atlantic salmon. Although Atlantic salmon and rainbow trout are closely related,the gene organization of their IB region has undergone extensive gene rearrangements. The Atlanticsalmon has only one class I UCA pseudogene in the IB region while trout contains the four MHC UCA, UDA,UEA and UFA class I loci. The large differences in gene content and most likely function of the salmon andtrout class IB region clearly argues that sequencing of salmon will not necessarily provide informationrelevant for trout and vice versa

    MHC-linked and un-linked class I genes in the wallaby

    Get PDF
    Background: MHC class I antigens are encoded by a rapidly evolving gene family comprising classical and non-classical genes that are found in all vertebrates and involved in diverse immune functions. However, there is a fundamental difference between the organization of class I genes in mammals and non-mammals. Non-mammals have a single classical gene responsible for antigen presentation, which is linked to the antigen processing genes, including TAP. This organization allows co-evolution of advantageous class Ia/ TAP haplotypes. In contrast, mammals have multiple classical genes within the MHC, which are separated from the antigen processing genes by class III genes. It has been hypothesized that separation of classical class I genes from antigen processing genes in mammals allowed them to duplicate. We investigated this hypothesis by characterizing the class I genes of the tammar wallaby, a model marsupial that has a novel MHC organization, with class I genes located within the MHC and 10 other chromosomal locations. Results: Sequence analysis of 14 BACs containing 15 class I genes revealed that nine class I genes, including one to three classical class I, are not linked to the MHC but are scattered throughout the genome. Kangaroo Endogenous Retroviruses (KERVs) were identified flanking the MHC un-linked class I. The wallaby MHC contains four non-classical class I, interspersed with antigen processing genes. Clear orthologs of non-classical class I are conserved in distant marsupial lineages. Conclusion: We demonstrate that classical class I genes are not linked to antigen processing genes in the wallaby and provide evidence that retroviral elements were involved in their movement. The presence of retroviral elements most likely facilitated the formation of recombination hotspots and subsequent diversification of class I genes. The classical class I have moved away from antigen processing genes in eutherian mammals and the wallaby independently, but both lineages appear to have benefited from this loss of linkage by increasing the number of classical genes, perhaps enabling response to a wider range of pathogens. The discovery of non-classical orthologs between distantly related marsupial species is unusual for the rapidly evolving class I genes and may indicate an important marsupial specific function

    The Manganese-containing Ribonucleotide Reductase of Corynebacterium ammoniagenes is a Class Ib Enzyme

    Get PDF
    Ribonucleotide reductases (RNRs) are key enzymes in living cells that provide the precursors of DNA synthesis. The three characterized classes of RNRs differ by their metal cofactor and their stable organic radical. We have purified to near homogeneity the enzymatically active Mn-containing RNR of Corynebacterium ammoniagenes, previously claimed to represent a fourth RNR class. N-terminal and internal peptide sequence analyses clearly indicate that the C. ammoniagenes RNR is a class Ib enzyme. In parallel, we have cloned a 10-kilobase pair fragment from C. ammoniagenes genomic DNA, using primers specific for the known class Ib RNR. The cloned class Ib locus contains the nrdHIEF genes typical for class Ib RNR operon. The deduced amino acid sequences of the nrdE and nrdF genes matched the peptides from the active enzyme, demonstrating that C. ammoniagenes RNR is composed of R1E and R2F components typical of class Ib. We also show that the Mn-containing RNR has a specificity for the NrdH-redoxin and a response to allosteric effectors that are typical of class Ib RNRs. Electron paramagnetic resonance and atomic absorption analyses confirm the presence of Mn as a cofactor and show, for the first time, insignificant amounts of iron and cobalt found in the other classes of RNR. Our discovery that C. ammoniagenes RNR is a class Ib enzyme and possesses all the highly conserved amino acid side chains that are known to ligate two ferric ions in other class I RNRs evokes new, challenging questions about the control of the metal site specificity in RNR. The cloning of the entire NrdHIEF locus of C. ammoniagenes will facilitate further studies along these lines

    Organization of the class I region of the bovine major histocompatibility complex (BoLA) and the characterization of a class I frameshift deletion (BoLA-Adel) prevalent in feral bovids

    Get PDF
    The major histocompatibility complex (MHC) is a genomic region containing genes of immunomodulatory importance. MHC class I genes encode cell-surface glycoproteins that present peptides to circulating T cells, playing a key role in recognition of self and non-self. Studies of MHC loci in vertebrates have examined levels of polymorphism and molecular evolutionary processes generating diversity. The bovine MHC (BoLA) has been associated with disease susceptibility, resistance and progression. To delineate mechanisms by which MHC class I genes evolved to function optimally in a species like cattle, it is necessary to study genomic organization of BoLA to define gene content, and investigate characteristics of expressed class I molecules. This study describes development of a physical map of BoLA class I region derived from screening two BAC libraries, isolating positive clones and confirming gene content, order and chromosomal location through PCR, novel BAC end sequencing techniques, and selected BAC shotgun cloning and/or sequencing and FISH analysis. To date, this is the most complete ordered BAC array encompassing the BoLA class I region from the class III boundary to the extended class I region. Characterization of a frameshift allele exhibiting trans-species polymorphism in Bos and Bison by flow cytometry, real-time RT-PCR, 1D and 2D gel analysis is also described. This frameshift allele encodes an early termination signal within the antigen recognition site (ARS) of exon 3 of the BoLA BSA-Adel class I gene predicting a truncated class I protein that is soluble. An ability to assess MHC diversity in populations and provision of animals with defined MHC haplotypes and genetic content for experimental research is necessary in developing a basis upon which to build functional studies to elucidate associations between haplotype and disease in bovids. The BoLA class I region is immunologically important for disease association studies in an economically important species. This study provides knowledge of gene content and organization within the class I MHC region in cattle, providing a template for more detailed analysis and elucidation of complex disease associations through functional genomics and comparative analysis, as well as evolution of the MHC in bovids to optimize a populationÂs immune response

    Imipramine blue sensitively and selectively targets FLT3-ITD positive acute myeloid leukemia cells.

    Get PDF
    Aberrant cytokine signaling initiated from mutant receptor tyrosine kinases (RTKs) provides critical growth and survival signals in high risk acute myeloid leukemia (AML). Inhibitors to FLT3 have already been tested in clinical trials, however, drug resistance limits clinical efficacy. Mutant receptor tyrosine kinases are mislocalized in the endoplasmic reticulum (ER) of AML and play an important role in the non-canonical activation of signal transducer and activator of transcription 5 (STAT5). Here, we have tested a potent new drug called imipramine blue (IB), which is a chimeric molecule with a dual mechanism of action. At 200-300 nM concentrations, IB is a potent inhibitor of STAT5 through liberation of endogenous phosphatase activity following NADPH oxidase (NOX) inhibition. However, at 75-150 nM concentrations, IB was highly effective at killing mutant FLT3-driven AML cells through a similar mechanism as thapsigargin (TG), involving increased cytosolic calcium. IB also potently inhibited survival of primary human FLT3/ITD+ AML cells compared to FLT3/ITDneg cells and spared normal umbilical cord blood cells. Therefore, IB functions through a mechanism involving vulnerability to dysregulated calcium metabolism and the combination of fusing a lipophilic amine to a NOX inhibiting dye shows promise for further pre-clinical development for targeting high risk AML

    High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis.

    Get PDF
    We investigated association between HLA class I and class II alleles and haplotypes, and KIR loci and their HLA class I ligands, with multiple sclerosis (MS) in 412 European American MS patients and 419 ethnically matched controls, using next-generation sequencing. The DRB1*15:01~DQB1*06:02 haplotype was highly predisposing (odds ratio (OR) = 3.98; 95% confidence interval (CI) = 3-5.31; p-value (p) = 2.22E-16), as was DRB1*03:01~DQB1*02:01 (OR = 1.63; CI = 1.19-2.24; p = 1.41E-03). Hardy-Weinberg (HW) analysis in MS patients revealed a significant DRB1*03:01~DQB1*02:01 homozyote excess (15 observed; 8.6 expected; p = 0.016). The OR for this genotype (5.27; CI = 1.47-28.52; p = 0.0036) suggests a recessive MS risk model. Controls displayed no HW deviations. The C*03:04~B*40:01 haplotype (OR = 0.27; CI = 0.14-0.51; p = 6.76E-06) was highly protective for MS, especially in haplotypes with A*02:01 (OR = 0.15; CI = 0.04-0.45; p = 6.51E-05). By itself, A*02:01 is moderately protective, (OR = 0.69; CI = 0.54-0.87; p = 1.46E-03), and haplotypes of A*02:01 with the HLA-B Thr80 Bw4 variant (Bw4T) more so (OR = 0.53; CI = 0.35-0.78; p = 7.55E-04). Protective associations with the Bw4 KIR ligand resulted from linkage disequilibrium (LD) with DRB1*15:01, but the Bw4T variant was protective (OR = 0.64; CI = 0.49-0.82; p = 3.37-04) independent of LD with DRB1*15:01. The Bw4I variant was not associated with MS. Overall, we find specific class I HLA polymorphisms to be protective for MS, independent of the strong predisposition conferred by DRB1*15:01
    corecore