50,909 research outputs found
Adaptive Dispatching of Tasks in the Cloud
The increasingly wide application of Cloud Computing enables the
consolidation of tens of thousands of applications in shared infrastructures.
Thus, meeting the quality of service requirements of so many diverse
applications in such shared resource environments has become a real challenge,
especially since the characteristics and workload of applications differ widely
and may change over time. This paper presents an experimental system that can
exploit a variety of online quality of service aware adaptive task allocation
schemes, and three such schemes are designed and compared. These are a
measurement driven algorithm that uses reinforcement learning, secondly a
"sensible" allocation algorithm that assigns jobs to sub-systems that are
observed to provide a lower response time, and then an algorithm that splits
the job arrival stream into sub-streams at rates computed from the hosts'
processing capabilities. All of these schemes are compared via measurements
among themselves and with a simple round-robin scheduler, on two experimental
test-beds with homogeneous and heterogeneous hosts having different processing
capacities.Comment: 10 pages, 9 figure
Phonetic Temporal Neural Model for Language Identification
Deep neural models, particularly the LSTM-RNN model, have shown great
potential for language identification (LID). However, the use of phonetic
information has been largely overlooked by most existing neural LID methods,
although this information has been used very successfully in conventional
phonetic LID systems. We present a phonetic temporal neural model for LID,
which is an LSTM-RNN LID system that accepts phonetic features produced by a
phone-discriminative DNN as the input, rather than raw acoustic features. This
new model is similar to traditional phonetic LID methods, but the phonetic
knowledge here is much richer: it is at the frame level and involves compacted
information of all phones. Our experiments conducted on the Babel database and
the AP16-OLR database demonstrate that the temporal phonetic neural approach is
very effective, and significantly outperforms existing acoustic neural models.
It also outperforms the conventional i-vector approach on short utterances and
in noisy conditions.Comment: Submitted to TASL
High-dimensional sequence transduction
We investigate the problem of transforming an input sequence into a
high-dimensional output sequence in order to transcribe polyphonic audio music
into symbolic notation. We introduce a probabilistic model based on a recurrent
neural network that is able to learn realistic output distributions given the
input and we devise an efficient algorithm to search for the global mode of
that distribution. The resulting method produces musically plausible
transcriptions even under high levels of noise and drastically outperforms
previous state-of-the-art approaches on five datasets of synthesized sounds and
real recordings, approximately halving the test error rate
Multi-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation
Image annotation aims to annotate a given image with a variable number of
class labels corresponding to diverse visual concepts. In this paper, we
address two main issues in large-scale image annotation: 1) how to learn a rich
feature representation suitable for predicting a diverse set of visual concepts
ranging from object, scene to abstract concept; 2) how to annotate an image
with the optimal number of class labels. To address the first issue, we propose
a novel multi-scale deep model for extracting rich and discriminative features
capable of representing a wide range of visual concepts. Specifically, a novel
two-branch deep neural network architecture is proposed which comprises a very
deep main network branch and a companion feature fusion network branch designed
for fusing the multi-scale features computed from the main branch. The deep
model is also made multi-modal by taking noisy user-provided tags as model
input to complement the image input. For tackling the second issue, we
introduce a label quantity prediction auxiliary task to the main label
prediction task to explicitly estimate the optimal label number for a given
image. Extensive experiments are carried out on two large-scale image
annotation benchmark datasets and the results show that our method
significantly outperforms the state-of-the-art.Comment: Submited to IEEE TI
Recurrent Neural Networks For Accurate RSSI Indoor Localization
This paper proposes recurrent neuron networks (RNNs) for a fingerprinting
indoor localization using WiFi. Instead of locating user's position one at a
time as in the cases of conventional algorithms, our RNN solution aims at
trajectory positioning and takes into account the relation among the received
signal strength indicator (RSSI) measurements in a trajectory. Furthermore, a
weighted average filter is proposed for both input RSSI data and sequential
output locations to enhance the accuracy among the temporal fluctuations of
RSSI. The results using different types of RNN including vanilla RNN, long
short-term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM
(BiLSTM) are presented. On-site experiments demonstrate that the proposed
structure achieves an average localization error of m with of the
errors under m, which outperforms the conventional KNN algorithms and
probabilistic algorithms by approximately under the same test
environment.Comment: Received signal strength indicator (RSSI), WiFi indoor localization,
recurrent neuron network (RNN), long shortterm memory (LSTM),
fingerprint-based localizatio
Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms: support vector regression forecast combinations
The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm
- …