10 research outputs found

    Architectured cellular and bulk ceramic materials based on SiC and graphene/SiC with enhanced transport properties

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química Inorgánica. Fecha de lectura: 11-12-2015Esta tesis doctoral ha sido financiada por el proyecto MAT 2009- 09600, y la beca FPI nº BES-2010-041382, del Gobierno de España

    New York State Energy Research and Development Authority. Research projects` update project status as of March 31, 1997

    Full text link

    Experimental and Theoretical Analysis of Pressure Coupled Infusion Gyration for Fibre Production

    Get PDF
    In this work, we uncover the science of the combined application of external pressure, controlled infusion of polymer solution and gyration in the field of nanofiber preparation. This novel application takes gyration-based method into another new arena through enabling the mass production of exceedingly fine (few nanometres upwards) nanofibres in a single step. Polyethylene oxide (PEO) was used as a model polymer in the experimental study, which shows the use of this novel method to fabricate polymeric nanofibres and nanofibrous mats under different combinations of operating parameters, including working pressure, rotational speed, infusion rate and collection distance. The morphologies of the nanofibres were characterised using scanning electron microscopy, and the anisotropy of alignment of fibre was studied using two dimensional fast Fourier transform analysis. A correlation between the product morphology and the processing parameters is established. The response surface models of the experimental process were developed using the least squares fitting. A systematic description of the PCIG spinning was developed to help us obtain a clear understanding of the fibre formation process of this novel application. The input data we used are the conventional mean of fibre diameter measurements obtained from our experimental works. In this part, both linear and nonlinear fitting formats were applied, and the successes of the fitted models were mainly evaluated using Adjusted R2 and Akaike Information Criterion (AIC). The correlations and effects of individual parameters and their interactions were explicitly studied. The modelling results indicated the polymer concentration has the most significant impact on fibre diameters. A self-defined objective function was studied with the best-fitted model to optimise the experimental process for achieving the desired nanofibre diameters and narrow standard deviations. The experimental parameters were optimised by several algorithms, and the most favoured sets of parameters recommended by the non-linear interior point methods were further validated through a set of additional experiments. The results of validation indicated that pressure coupled infusion gyration offers a facile way for forming nanofibres and nanofibre assemblies, and the developed model has a good prediction power of experimental parameters that are possible to be useful for achieving the desirable PEO nanofibres

    2009 Annual Progress Report: DOE Hydrogen Program

    Full text link
    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments of the DOE Hydrogen Program for FY2009. It covers the program areas of hydrogen production and delivery; fuel cells; manufacturing; technology validation; safety, codes and standards; education; and systems analysis

    Research in the chemical sciences. Summaries of FY 1995

    Full text link
    corecore