7,253 research outputs found
Neural regulation of cancer: from mechanobiology to inflammation.
Despite recent progress in cancer research, the exact nature of malignant transformation and its progression is still not fully understood. Particularly metastasis, which accounts for most cancer death, is a very complex process, and new treatment strategies require a more comprehensive understanding of underlying regulatory mechanisms. Recently, the sympathetic nervous system (SNS) has been implicated in cancer progression and beta-blockers have been identified as a novel strategy to limit metastasis. This review discusses evidence that SNS signaling regulates metastasis by modulating the physical characteristics of tumor cells, tumor-associated immune cells and the extracellular matrix (ECM). Altered mechanotype is an emerging hallmark of cancer cells that is linked to invasive phenotype and treatment resistance. Mechanotype also influences crosstalk between tumor cells and their environment, and may thus have a critical role in cancer progression. First, we discuss how neural signaling regulates metastasis and how SNS signaling regulates both biochemical and mechanical properties of tumor cells, immune cells and the ECM. We then review our current knowledge of the mechanobiology of cancer with a focus on metastasis. Next, we discuss links between SNS activity and tumor-associated inflammation, the mechanical properties of immune cells, and how the physical properties of the ECM regulate cancer and metastasis. Finally, we discuss the potential for clinical translation of our knowledge of cancer mechanobiology to improve diagnosis and treatment
Nanoparticle–cell interaction: a cell mechanics perspective
Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology
Visco-Node-Pore Sensing: A Microfluidic Rheology Platform to Characterize Viscoelastic Properties of Epithelial Cells.
Viscoelastic properties of cells provide valuable information regarding biological or clinically relevant cellular characteristics. Here, we introduce a new, electronic-based, microfluidic platform-visco-node-pore sensing (visco-NPS)-which quantifies cellular viscoelastic properties under periodic deformation. We measure the storage (G) and loss (G″) moduli (i.e., elasticity and viscosity, respectively) of cells. By applying a wide range of deformation frequencies, our platform quantifies the frequency dependence of viscoelastic properties. G and G″ measurements show that the viscoelastic properties of malignant breast epithelial cells (MCF-7) are distinctly different from those of non-malignant breast epithelial cells (MCF-10A). With its sensitivity, visco-NPS can dissect the individual contributions of different cytoskeletal components to whole-cell mechanical properties. Moreover, visco-NPS can quantify the mechanical transitions of cells as they traverse the cell cycle or are initiated into an epithelial-mesenchymal transition. Visco-NPS identifies viscoelastic characteristics of cell populations, providing a biophysical understanding of cellular behavior and a potential for clinical applications
Focus on the Physics of Cancer
Despite the spectacular achievements of molecular biology in the second half
of the twentieth century and the crucial advances it permitted in cancer
research, the fight against cancer has brought some disillusions. It is
nowadays more and more apparent that getting a global picture of the very
diverse and interlinked aspects of cancer development necessitates, in synergy
with these achievements, other perspectives and investigating tools. In this
undertaking, multidisciplinary approaches that include quantitative sciences in
general and physics in particular play a crucial role. This `focus on'
collection contains 19 articles representative of the diversity and
state-of-the-art of the contributions that physics can bring to the field of
cancer research.Comment: Invited editorial review for the `Focus on the Physics of Cancer'
published by the New journal of Physics in 2011--201
A modelling approach towards Epidermal homoeostasis control
In order to grasp the features arising from cellular discreteness and
individuality, in large parts of cell tissue modelling agent-based models are
favoured. The subclass of off-lattice models allows for a physical motivation
of the intercellular interaction rules. We apply an improved version of a
previously introduced off-lattice agent-based model to the steady-state flow
equilibrium of skin. The dynamics of cells is determined by conservative and
drag forces,supplemented with delta-correlated random forces. Cellular
adjacency is detected by a weighted Delaunay triangulation. The cell cycle time
of keratinocytes is controlled by a diffusible substance provided by the
dermis. Its concentration is calculated from a diffusion equation with
time-dependent boundary conditions and varying diffusion coefficients. The
dynamics of a nutrient is also taken into account by a reaction-diffusion
equation. It turns out that the analysed control mechanism suffices to explain
several characteristics of epidermal homoeostasis formation. In addition, we
examine the question of how {\em in silico} melanoma with decreased basal
adhesion manage to persist within the steady-state flow-equilibrium of the
skin.Interestingly, even for melanocyte cell cycle times being substantially
shorter than for keratinocytes, tiny stochastic effects can lead to completely
different outcomes. The results demonstrate that the understanding of initial
states of tumour growth can profit significantly from the application of
off-lattice agent-based models in computer simulations.Comment: 23 pages, 7 figures, 1 table; version that is to appear in Journal of
Theoretical Biolog
Effects of Low Intensity Focused Ultrasound on Liposomes Containing Channel proteins.
The ability to reversibly and non-invasively modulate region-specific brain activity in vivo suggests Low Intensity Focused Ultrasound (LIFU) as potential therapeutics for neurological dysfunctions such as epilepsy and Parkinson's disease. While in vivo studies provide evidence of the bioeffects of LIFU on neuronal activity, they merely hint at potential mechanisms but do not fully explain how this technology achieves these effects. One potential hypothesis is that LIFU produces local membrane depolarization by mechanically perturbing the neuronal cell membrane, or activating channels or other proteins embedded in the membrane. Proteins that sense mechanical perturbations of the membrane, such as those gated by membrane tension, are prime candidates for activating in response to LIFU and thus leading to the neurological responses that have been measured. Here we use the bacterial mechanosensitive channel MscL, which has been purified and reconstituted in liposomes, to determine how LIFU may affect the activation of this membrane-tension gated channel. Two bacterial voltage-gated channels, KvAP and NaK2K F92A channels were also studied. Surprisingly, the results suggest that ultrasound modulation and membrane perturbation does not induce channel gating, but rather induces pore formation at the membrane protein-lipid interface. However, in vesicles with high MscL mechanosensitive channel concentrations, apparent decreases in pore formation are observed, suggesting that this membrane-tension-sensitive protein may serve to increase the elasticity of the membrane, presumably because of expansion of the channel in the plane of the membrane independent of channel gating
- …