1,027,084 research outputs found
Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future
Precision crystal calorimeters traditionally play an important role in high energy physics experiments. In the last two decades, it faces a challenge to maintain its precision in a hostile radiation environment. This paper reviews the performance of crystal calorimeters constructed for high energy physics experiments and the progress achieved in understanding crystal's radiation damage as well as in developing high quality scintillating crystals for particle physics. Potential applications of new generation scintillating crystals of high density and high light yield, such as LSO and LYSO, in particle physics experiments is also discussed
QCD under extreme conditions: an informal discussion
We present an informal discussion of some aspects of strong interactions
under extreme conditions of temperature and density at an elementary level.
This summarizes lectures delivered at the 2013 CERN -- Latin-American School of
High-Energy Physics and is aimed at students working in experimental
high-energy physics.Comment: 11 pages, 6 figures, based on lectures at the 2013 CERN --
Latin-American School of High-Energy Physics, Arequipa, Peru, submitted for
publication in a CERN Yellow Repor
Crystal calorimeters in the next decade
Crystal calorimeter has traditionally played an important
role in precision measurement of electrons and photons in
high energy physics experiments. Recent interest in calorimeter
technology extends its application to measurement of hadrons and
jets with dual readout. Potential application of new generation
scintillating crystals of high density and high light yield, such
as LYSO, in high energy physics experiments is described.
Candidate crystals for the homogeneous hadronic calorimeter
concept are also discussed
Ion stopping in dense plasma target for high energy density physics
The basic physics of nonrelativistic and electromagnetic ion stopping in hot and ionized plasma targets is thoroughly updated. Corresponding projectile-target interactions involve enhanced projectile ionization and coupling with target free electrons leading to significantly larger energy losses in hot targets when contrasted to their cold homologues. Standard stoppping formalism is framed around the most economical extrapolation of high velocity stopping in cold matter. Further elaborations pay attention to target electron coupling and nonlinearities due to enhanced projectile charge state, as well. Scaling rules are then used to optimize the enhanced stopping of MeV/amu ions in plasmas with electron linear densities nel ~ 10 18 -10 20 cm -2 . The synchronous firing of dense and strongly ionized plasmas with the time structure of bunched and energetic multicharged ion beam then allow to probe, for the first time, the long searched enhanced plasma stopping and projectile charge at target exit. Laser ablated plasmas (SPQR1) and dense linear plasma columns (SPQR2) show up as targets of choice in providing accurate and on line measurements of plasma parameters. Corresponding stopping results are of a central significance in asserting the validity of intense ion beam scenarios for driving thermonuclear pellets. Other applications of note feature thorium induced fission, novel ion sources and specific material processing through low energy ion beams. Last but not least, the given ion beam-plasma target interaction physics is likely to pave a way to the production and diagnostics of warm dense matter (WDM)
Jet Energy Density in Hadron-Hadron Collisions at High Energies
The average particle multiplicity density dN/deta is the dynamical quantity
which reflects some regularities of particle production in low-pT range. The
quantity is an important ingredient of z-scaling. Experimental results on
charged particle density are available for pp, pA and AA collisions while
experimental properties of the jet density are still an open question. The goal
of this work is to find the variable which will reflect the main features of
the jet production in low transverse energy range and play the role of the
scale factor for the scaling function psi(z) and variable z in data
z-presentation. The appropriate candidate is the variable we called "scaled jet
energy density". Scaled jet energy density is the probability to have a jet
with defined ET in defined xT and pseudorapidity regions. The PYTHIA6.2 Monte
Carlo generator is used for calculation of scaled jet energy density in
proton-proton collisions over a high energy range (sqrt s = 200-14000 GeV) and
at eta = 0. The properties of the new variable are discussed and sensitivity to
"physical scenarios" applied in the standard Monte Carlo generator is noted.
The results of scaled jet energy density at LHC energies are presented and
compared with predictions based on z-scaling.Comment: 11 pages, LaTeX, 8 figures, Presented at the XVII International
Baldin Seminar on High Energy Physics Problems "Relativistic Nuclear Physics
& Quantum Chromodynamics", Dubna, Russia, September 27 - October 2, 200
- âŠ