3,234 research outputs found

    Second harmonic generation in SiC polytypes

    Full text link
    LMTO calculations are presented for the frequency dependent second harmonic generation (SHG) in the polytypes 2H, 4H, 6H, 15R and 3C of SiC. All independent tensor components are calculated. The spectral features and the ratios of the 333 to 311 tensorial components are studied as a function of the degree of hexagonality. The relationship to the linear optical response and the underlying band structure are investigated. SHG is suggested to be a sensitive tool for investigating the near band edge interband excitations.Comment: 12 pages, 10 figure

    Correlation between layer thickness and periodicity of long polytypes in silicon carbide

    Get PDF
    The layer widths and repeat spacing of long-period polytypes (LPPs) have been determined using synchrotron radiation source (SRS) X-ray diffraction topography (XRDT). This method has proved to be a powerful tool in investigating the spatial extent of one-dimensional disorder (1DD), long-period polytypes (LPPs) and the boundaries of polytype layers in silicon carbide (SiC). The resulting neighbourhood coalescence models have confirmed the validity of the sandwich rule even in the limit of two arbitrarily long LPPs, as well as the unique nature of the 6H polytype. A significant empirical trend is reported here that relates the thickness of LPP layers to the periodicity of the repeat stacking sequence measured on the topographs. A good correlation between the data suggests that this behaviour is governed by a simple mathematical expression t = kNn. Values for k and n have been determined that relate the polytype thickness (t in microns) to the number of hexagonal layers (N) in the polytype stacking repeat. These values can be used to prompt questions about the limits of polytypism and disorder in SiC

    Total energy differences between SiC polytypes revisited

    Full text link
    The total energy differences between various SiC polytypes (3C, 6H, 4H, 2H, 15R and 9R) were calculated using the full-potential linear muffin-tin orbital method using the Perdew-Wang-(91) generalized gradient approximation to the exchange-correlation functional in the density functional method. Numerical convergence versus k-point sampling and basis set completeness are demonstrated to be better than 1 meV/atom. The parameters of several generalized anisotropic next-nearest-neighbor Ising models are extracted and their significance and consequences for epitaxial growth are discussed.Comment: 8 pages, 3 figures, Latex, uses epsfig and revte

    Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations

    Full text link
    We use density functional theory to calculate the electronic band structures, cohesive energies, phonon dispersions, and optical absorption spectra of two-dimensional In2_2X2_2 crystals, where X is S, Se, or Te. We identify two crystalline phases (alpha and beta) of monolayers of hexagonal In2_2X2_2, and show that they are characterized by different sets of Raman-active phonon modes. We find that these materials are indirect-band-gap semiconductors with a sombrero-shaped dispersion of holes near the valence-band edge. The latter feature results in a Lifshitz transition (a change in the Fermi-surface topology of hole-doped In2_2X2_2) at hole concentrations nS=6.86×1013n_{\rm S}=6.86\times 10^{13} cm−2^{-2}, nSe=6.20×1013n_{\rm Se}=6.20\times 10^{13} cm−2^{-2}, and nTe=2.86×1013n_{\rm Te}=2.86\times 10^{13} cm−2^{-2} for X=S, Se, and Te, respectively, for alpha-In2_2X2_2 and nS=8.32×1013n_{\rm S}=8.32\times 10^{13} cm−2^{-2}, nSe=6.00×1013n_{\rm Se}=6.00\times 10^{13} cm−2^{-2}, and nTe=8.14×1013n_{\rm Te}=8.14\times 10^{13} cm−2^{-2} for beta-In2_2X2_2.Comment: 9 pages. arXiv admin note: text overlap with arXiv:1302.606

    Infrared properties of SiC particles

    Get PDF
    We present basic laboratory infrared data on a large number of SiC particulate samples, which should be of great value for the interpretation of the 11.3 micron feature observed in the spectra of carbon-rich stars. The laboratory spectra show a wide variety of the SiC phonon features in the 10-13 micron wavelength range, both in peak wavelength and band shape. The main parameters determining the band profile are morphological factors as grain size and shape and, in many cases, impurities in the material. We discovered the interesting fact that free charge carriers, generated e.g. by nitrogen doping, are a very common characteristics of many SiC particle samples. These free charge carriers produce very strong plasmon absorption in the near and middle infrared, which may also heavily influence the 10-13 micron feature profile via plasmon-phonon coupling. We also found that there is no systematic dependence of the band profile on the crystal type (alpha- vs. beta-SiC). This is proven both experimentally and by theoretical calculations based on a study of the SiC phonon frequencies. Further, we give optical constants of amorphous SiC. We discuss the implications of the new laboratory results for the interpretation of the spectra of carbon stars.Comment: 17 pages, 12 figures. To appear in A&
    • …
    corecore