165,150 research outputs found

    Product Search Algorithm Based on Improved Ant Colony Optimization in a Distributed Network

    Get PDF
    The crowd intelligence-based e-commerce transaction network (CIeTN) is a distributed and unstructured network structure. Smart individuals, such as buyers, sellers, and third-party organizations, can store information in local nodes and connect and share information via moments. The purpose of this study is to design a product search algorithm on the basis of ant colony optimization (ACO) to achieve an efficient and accurate search for the product demand of a node in the network. We introduce the improved ideas of maximum and minimum ants to design a set of heuristic search algorithms on the basis of ACO. To reduce search blindness, additional relevant heuristic factors are selected to define the heuristic calculation equation. The pheromone update mechanism integrating into the product matching factor and forwarding probability is used to design the network search rules among nodes in the search algorithm. Finally, the search algorithm is facilitated by Java language programming and PeerSim software. Experimental results show that the algorithm has significant advantages over the flooding method and the random walk method in terms of search success rate, search time, product matching, search network consumption, and scalability. The search algorithm introduces the idea of improving the maximum and minimum ant colony system and proposes new ideas in the design of heuristic factors in the heuristic equation and the pheromone update strategy. The search algorithm can search for product information effectively

    Solving Medium to Large Sized Euclidean Generalized Minimum Spanning Tree Problems

    Get PDF
    The generalized minimum spanning tree problem is a generalization of the minimum spanning tree problem. This network design problems finds several practical applications, especially when one considers the design of a large-capacity backbone network connecting several individual networks. In this paper we study the performance of six neighborhood search heuristics based on tabu search and variable neighborhood search on this problem domain. Our principal finding is that a tabu search heuristic almost always provides the best quality solution for small to medium sized instances within short execution times while variable neighborhood decomposition search provides the best quality solutions for most large instances.

    A Large Neighborhood Search heuristic for Supply Chain Network Design

    Get PDF
    24 pagesMany exact or approximate solution techniques have been used to solve facility location problems and more generally supply chain network design problems. Yet, the Large Neighborhood Search technique (LNS) has almost never been proposed for solving such problems, although it has proven its efficiency and flexibility in solving other complex combinatorial optimization problems. In this paper we propose an LNS framework for solving a four-layer single period multi-product supply chain network design problem involving multimodal transport. Location decisions for intermediate facilities (e.g. plants and distribution centers) are made using the LNS while transportation modes and product flow decisions are determined by a greedy heuristic. As a post-optimization step, we also use linear programming to determine the optimal product flows once the logistics network is fixed. Extensive experiments based on generated instances of different sizes and characteristics show the effectiveness of the method compared with a state-of-the-art solver

    Computational Protein Design Using AND/OR Branch-and-Bound Search

    Full text link
    The computation of the global minimum energy conformation (GMEC) is an important and challenging topic in structure-based computational protein design. In this paper, we propose a new protein design algorithm based on the AND/OR branch-and-bound (AOBB) search, which is a variant of the traditional branch-and-bound search algorithm, to solve this combinatorial optimization problem. By integrating with a powerful heuristic function, AOBB is able to fully exploit the graph structure of the underlying residue interaction network of a backbone template to significantly accelerate the design process. Tests on real protein data show that our new protein design algorithm is able to solve many prob- lems that were previously unsolvable by the traditional exact search algorithms, and for the problems that can be solved with traditional provable algorithms, our new method can provide a large speedup by several orders of magnitude while still guaranteeing to find the global minimum energy conformation (GMEC) solution.Comment: RECOMB 201

    Reliable Communication Network Design with Evolutionary Algorithms

    Full text link
    For the reliable communication network design (RCND) problem links are unreliable and for each link several options are available with different reliabilities and costs. The goal is to find a cost-minimal communication network design that satisfies a pre-defined overall reliability constraint. This paper presents two new EA approaches, LaBORNet and BaBORNet, for the RCND problem. LaBORNet uses an encoding that represents the network topology as well as the used link options and repairs infeasible solutions using an additional repair heuristic (CURE). BaBORNet encodes only the network topology and determines the link options by using the repair heuristic CURE as a local search method. The experimental results show that the new EA approaches using repair heuristics outperform existing EA approaches from the literature using penalties for infeasible solutions and find better solutions for existing problems from the literature as well as for new and larger test problems

    Fuzzy Simulated Evolution Algorithm for Topology Design on Campus Networks

    Get PDF
    The topology design of campus networks is a hard contrained combinatorial optimization problem. It consists of deciding the number, type, and location of the active network elements (nodes) and links. This choice is dictated by physical and technological constraints and must optimize several objectives. Example of objectives are monetary cost, network delay, and hop count between communicating pairs. Furthermore, due to the nondeterministic nature of network traffic and other design parameters, the objectives criteria are imprecise. Fuzzy logic provides a suitable mathematical framework in such a situation. In this paper, we present an approach based on Simulated Evolution algorithm for the design of campus network topology. The two main phases of the algorithm, namely evaluation and allocation, have been fuzzified. To diversify the search, we have also incorporated Tabu Search-based characteristics in the allocation phase of the SE algorithm. This approach is then compared with Simulated Anealing algorithm, which is another well-known heuristic. Results show that on all test cases, Simulated Evolution algorithm more intelligent search of the solutions subspace and was able to find better solutions than Simulated Anealing

    Algorithmic Aspects of Cyclic Combinational Circuit Synthesis

    Get PDF
    Digital circuits are called combinational if they are memoryless: if they have outputs that depend only on the current values of the inputs. Combinational circuits are generally thought of as acyclic (i.e., feed-forward) structures. And yet, cyclic circuits can be combinational. Cycles sometimes occur in designs synthesized from high-level descriptions, as well as in bus-based designs [16]. Feedback in such cases is carefully contrived, typically occurring when functional units are connected in a cyclic topology. Although the premise of cycles in combinational circuits has been accepted, and analysis techniques have been proposed [7], no one has attempted the synthesis of circuits with feedback at the logic level. We have argued the case for a paradigm shift in combinational circuit design [10]. We should no longer think of combinational logic as acyclic in theory or in practice, since most combinational circuits are best designed with cycles. We have proposed a general methodology for the synthesis of multilevel networks with cyclic topologies and incorporated it in a general logic synthesis environment. In trials, benchmark circuits were optimized significantly, with improvements of up to 30%I n the area. In this paper, we discuss algorithmic aspects of cyclic circuit design. We formulate a symbolic framework for analysis based on a divide-and-conquer strategy. Unlike previous approaches, our method does not require ternary-valued simulation. Our analysis for combinationality is tightly coupled with the synthesis phase, in which we assemble a combinational network from smaller combinational components. We discuss the underpinnings of the heuristic search methods and present examples as well as synthesis results for benchmark circuits. In this paper, we discuss algorithmic aspects of cyclic circuit design. We formulate a symbolic framework for analysis based on a divide-and-conquer strategy. Unlike previous approaches, our method does not require ternary-valued simulation. Our analysis for combinationality is tightly coupled with the synthesis phase, in which we assemble a combinational network from smaller combinational components. We discuss the underpinnings of the heuristic search methods and present examples as well as synthesis results for benchmark circuits
    corecore