634,245 research outputs found
Simultaneous Facial Landmark Detection, Pose and Deformation Estimation under Facial Occlusion
Facial landmark detection, head pose estimation, and facial deformation
analysis are typical facial behavior analysis tasks in computer vision. The
existing methods usually perform each task independently and sequentially,
ignoring their interactions. To tackle this problem, we propose a unified
framework for simultaneous facial landmark detection, head pose estimation, and
facial deformation analysis, and the proposed model is robust to facial
occlusion. Following a cascade procedure augmented with model-based head pose
estimation, we iteratively update the facial landmark locations, facial
occlusion, head pose and facial de- formation until convergence. The
experimental results on benchmark databases demonstrate the effectiveness of
the proposed method for simultaneous facial landmark detection, head pose and
facial deformation estimation, even if the images are under facial occlusion.Comment: International Conference on Computer Vision and Pattern Recognition,
201
Owl and Lizard: Patterns of Head Pose and Eye Pose in Driver Gaze Classification
Accurate, robust, inexpensive gaze tracking in the car can help keep a driver
safe by facilitating the more effective study of how to improve (1) vehicle
interfaces and (2) the design of future Advanced Driver Assistance Systems. In
this paper, we estimate head pose and eye pose from monocular video using
methods developed extensively in prior work and ask two new interesting
questions. First, how much better can we classify driver gaze using head and
eye pose versus just using head pose? Second, are there individual-specific
gaze strategies that strongly correlate with how much gaze classification
improves with the addition of eye pose information? We answer these questions
by evaluating data drawn from an on-road study of 40 drivers. The main insight
of the paper is conveyed through the analogy of an "owl" and "lizard" which
describes the degree to which the eyes and the head move when shifting gaze.
When the head moves a lot ("owl"), not much classification improvement is
attained by estimating eye pose on top of head pose. On the other hand, when
the head stays still and only the eyes move ("lizard"), classification accuracy
increases significantly from adding in eye pose. We characterize how that
accuracy varies between people, gaze strategies, and gaze regions.Comment: Accepted for Publication in IET Computer Vision. arXiv admin note:
text overlap with arXiv:1507.0476
Face Alignment Assisted by Head Pose Estimation
In this paper we propose a supervised initialization scheme for cascaded face
alignment based on explicit head pose estimation. We first investigate the
failure cases of most state of the art face alignment approaches and observe
that these failures often share one common global property, i.e. the head pose
variation is usually large. Inspired by this, we propose a deep convolutional
network model for reliable and accurate head pose estimation. Instead of using
a mean face shape, or randomly selected shapes for cascaded face alignment
initialisation, we propose two schemes for generating initialisation: the first
one relies on projecting a mean 3D face shape (represented by 3D facial
landmarks) onto 2D image under the estimated head pose; the second one searches
nearest neighbour shapes from the training set according to head pose distance.
By doing so, the initialisation gets closer to the actual shape, which enhances
the possibility of convergence and in turn improves the face alignment
performance. We demonstrate the proposed method on the benchmark 300W dataset
and show very competitive performance in both head pose estimation and face
alignment.Comment: Accepted by BMVC201
Fine-Grained Head Pose Estimation Without Keypoints
Estimating the head pose of a person is a crucial problem that has a large
amount of applications such as aiding in gaze estimation, modeling attention,
fitting 3D models to video and performing face alignment. Traditionally head
pose is computed by estimating some keypoints from the target face and solving
the 2D to 3D correspondence problem with a mean human head model. We argue that
this is a fragile method because it relies entirely on landmark detection
performance, the extraneous head model and an ad-hoc fitting step. We present
an elegant and robust way to determine pose by training a multi-loss
convolutional neural network on 300W-LP, a large synthetically expanded
dataset, to predict intrinsic Euler angles (yaw, pitch and roll) directly from
image intensities through joint binned pose classification and regression. We
present empirical tests on common in-the-wild pose benchmark datasets which
show state-of-the-art results. Additionally we test our method on a dataset
usually used for pose estimation using depth and start to close the gap with
state-of-the-art depth pose methods. We open-source our training and testing
code as well as release our pre-trained models.Comment: Accepted to Computer Vision and Pattern Recognition Workshops
(CVPRW), 2018 IEEE Conference on. IEEE, 201
Robust Head-Pose Estimation Based on Partially-Latent Mixture of Linear Regressions
Head-pose estimation has many applications, such as social event analysis,
human-robot and human-computer interaction, driving assistance, and so forth.
Head-pose estimation is challenging because it must cope with changing
illumination conditions, variabilities in face orientation and in appearance,
partial occlusions of facial landmarks, as well as bounding-box-to-face
alignment errors. We propose tu use a mixture of linear regressions with
partially-latent output. This regression method learns to map high-dimensional
feature vectors (extracted from bounding boxes of faces) onto the joint space
of head-pose angles and bounding-box shifts, such that they are robustly
predicted in the presence of unobservable phenomena. We describe in detail the
mapping method that combines the merits of unsupervised manifold learning
techniques and of mixtures of regressions. We validate our method with three
publicly available datasets and we thoroughly benchmark four variants of the
proposed algorithm with several state-of-the-art head-pose estimation methods.Comment: 12 pages, 5 figures, 3 table
In-the-wild Facial Expression Recognition in Extreme Poses
In the computer research area, facial expression recognition is a hot
research problem. Recent years, the research has moved from the lab environment
to in-the-wild circumstances. It is challenging, especially under extreme
poses. But current expression detection systems are trying to avoid the pose
effects and gain the general applicable ability. In this work, we solve the
problem in the opposite approach. We consider the head poses and detect the
expressions within special head poses. Our work includes two parts: detect the
head pose and group it into one pre-defined head pose class; do facial
expression recognize within each pose class. Our experiments show that the
recognition results with pose class grouping are much better than that of
direct recognition without considering poses. We combine the hand-crafted
features, SIFT, LBP and geometric feature, with deep learning feature as the
representation of the expressions. The handcrafted features are added into the
deep learning framework along with the high level deep learning features. As a
comparison, we implement SVM and random forest to as the prediction models. To
train and test our methodology, we labeled the face dataset with 6 basic
expressions.Comment: Published on ICGIP201
- …