8,880 research outputs found

    Precise modelling of switching and conduction losses in cascaded h-bridge multilevel inverters

    Get PDF
    Nowadays, voltage source multilevel inverters are being used extensively in industry due to its many advantages, compared to conventional two level inverters, such as higher output voltage at low switching frequency, low voltage stress(dv/dt), lower total harmonic distortion (THD), less electro-magnetic interference (EMI), smaller output filter and higher fundamental output. However, the evaluation of multilevel inverter losses is much more complicated compared to two level inverters. This paper proposes an on-line model for precise calculation of conduction and switching losses for cascaded h-bridge multilevel inverter. The model is simple and efficient and gives clear process of loss calculation. A singlephase 7-level cascaded h-bridge with IGBT's as switching devices has been used as a case study of the proposed model. The inverter has been controlled using selective harmonic elimination in which the switching angles were determined using the Genetic Algorithm (GA). MATLAB-SIMULINK is used for the modelling and simulation

    Power loss investigation in HVDC for cascaded H-bridge multilevel inverters (CHB-MLI)

    Get PDF
    In the last decade, the use of voltage-source multilevel inverters in industrial and utility power applications has been increased significantly mainly due to the many advantages of multilevel inverters, compared to conventional two level inverters. These advantages include: 1) higher output voltage at low switching frequency, 2) low voltage stress (dv/dt), 3) lower total harmonic distortion (THD), 4) less electro-magnetic interference (EMI), 5) smaller output filter, and 6) higher fundamental output. However, the computation of multilevel inverter power losses is much more complicated compared to conventional two level inverters. This paper presents a detailed investigation of CHB-MLI losses for HVDC. Different levels, and IGBT switching devices have been considered in the study. The inverter has been controlled using selective harmonic elimination in which the switching angles were determined using the Genetic Algorithm (GA). MATLAB-SIMULINK is used for the modelling and simulation. This investigation should result in a deeper knowledge and understanding of the performance of CHB-MLI using different IGBT switching devices

    Design and Analysis of Three-Phase Three-Level PWM Inverter

    Get PDF
    Design of three-phase three level PWM inverter and analysis of the output current harmonics are presented in this paper. The three-level inverter is designed to supply three-phase load and it is controlled by FPGA under several modulation techniques (Sinusoidal PWM and Third Harmonic Injection PWM). Selection of semiconductor switches and other component of the inverter are described. Inverter output current harmonics under several modulation techniques will be analysed and compared

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y TecnologĂ­a DPI2001-3089Ministerio de EduaciĂłn y Ciencia d TEC2006-0386

    Direct control strategy for a four-level three-phase flying-capacitor inverter

    Get PDF
    A direct predictive control strategy is proposed for a three-phase four-level flying-capacitor (FC) inverter in this paper. The balancing of the FC voltages, a challenge in applications with small capacitors and low switching frequencies, is done without any modulation, simply using tables calculated offline. These allow the realization of fast-dynamics output currents with reduced dv/dt in the output voltages and reduced switching frequencies. Moreover, no interharmonics are created when operating at low switching frequencies and with reference currents containing multiple harmonic components, which is a key feature for active power filters. Simulations and experimental results are presented to demonstrate the excellent performance of the direct control strategy in comparison with a conventional pulsewidth-modulation control technique, mostly for operation at low switching frequencies

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    Variable var compensator circuits

    Get PDF
    A family of two reactive-power compensator circuit is presented. A general model of some basic linear elements and switching function blocks is developed first. Then the two proposed compensator circuits are derived from the generalised model. The proposed circuits are capable of supplying leading as well as lagging reactive currents in stepless variation without using an inverter configuration. The switching frequency is in the range of 2.5 kHz and the largest capacitor utilised does not exceed 60 muF. The generated reactive current, in either the leading or lagging modes, contains less than 2% total harmonic distortio

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Optimum SHE for cascaded H-bridge multilevel inverters using: NR-GA-PSO, comparative study

    Get PDF
    Selective Harmonic Elimination (SHE) is very widely applied technique in the control of multilevel inverters that can be used to eliminate the low order dominant harmonics. This is considered a low frequency technique, in which the switching angles are predetermined based on solving a system of transcendental equations. Iterative techniques such as NR and Heuristic techniques such as GA and PSO have been used widely in literatures for the problem of SHE. This paper presents a detailed comparative study of these three techniques when applied for a 7-level CHB-MLI

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio
    • 

    corecore