29,547 research outputs found
The Hubble Constant
I review the current state of determinations of the Hubble constant, which
gives the length scale of the Universe by relating the expansion velocity of
objects to their distance. There are two broad categories of measurements. The
first uses individual astrophysical objects which have some property that
allows their intrinsic luminosity or size to be determined, or allows the
determination of their distance by geometric means. The second category
comprises the use of all-sky cosmic microwave background, or correlations
between large samples of galaxies, to determine information about the geometry
of the Universe and hence the Hubble constant, typically in a combination with
other cosmological parameters. Many, but not all, object-based measurements
give values of around 72-74km/s/Mpc , with typical errors of 2-3km/s/Mpc.
This is in mild discrepancy with CMB-based measurements, in particular those
from the Planck satellite, which give values of 67-68km/s/Mpc and typical
errors of 1-2km/s/Mpc. The size of the remaining systematics indicate that
accuracy rather than precision is the remaining problem in a good determination
of the Hubble constant. Whether a discrepancy exists, and whether new physics
is needed to resolve it, depends on details of the systematics of the
object-based methods, and also on the assumptions about other cosmological
parameters and which datasets are combined in the case of the all-sky methods.Comment: Extensively revised and updated since the 2007 version: accepted by
Living Reviews in Relativity as a major (2014) update of LRR 10, 4, 200
The Hubble Constant
Considerable progress has been made in determining the Hubble constant over
the past two decades. We discuss the cosmological context and importance of an
accurate measurement of the Hubble constant, and focus on six high-precision
distance-determination methods: Cepheids, tip of the red giant branch, maser
galaxies, surface brightness fluctuations, the Tully-Fisher relation and Type
Ia supernovae. We discuss in detail known systematic errors in the measurement
of galaxy distances and how to minimize them. Our best current estimate of the
Hubble constant is 73 +/-2 (random) +/-4 (systematic) km/s/Mpc. The importance
of improved accuracy in the Hubble constant will increase over the next decade
with new missions and experiments designed to increase the precision in other
cosmological parameters. We outline the steps that will be required to deliver
a value of the Hubble constant to 2% systematic uncertainty and discuss the
constraints on other cosmological parameters that will then be possible with
such accuracy.Comment: To be published in Annual Reviews of Astronomy and Astrophysics, Vol.
48, 2010, consisting of 79 pages, 13 figures, 2 table
The Hubble constant and dark energy from cosmological distance measures
We study how the determination of the Hubble constant from cosmological
distance measures is affected by models of dark energy and vice versa. For this
purpose, constraints on the Hubble constant and dark energy are investigated
using the cosmological observations of cosmic microwave background, baryon
acoustic oscillations and type Ia suprenovae. When one investigates dark
energy, the Hubble constant is often a nuisance parameter, thus it is usually
marginalized over. On the other hand, when one focuses on the Hubble constant,
simple dark energy models such as a cosmological constant and a constant
equation of state are usually assumed. Since we do not know the nature of dark
energy yet, it is interesting to investigate the Hubble constant assuming some
types of dark energy and see to what extent the constraint on the Hubble
constant is affected by the assumption concerning dark energy. We show that the
constraint on the Hubble constant is not affected much by the assumption for
dark energy. We furthermore show that this holds true even if we remove the
assumption that the universe is flat. We also discuss how the prior on the
Hubble constant affects the constraints on dark energy and/or the curvature of
the universe.Comment: 45 pages, 15 figure
Cepheid Parallaxes and the Hubble Constant
Revised Hipparcos parallaxes for classical Cepheids are analysed together
with 10 HST-based parallaxes (Benedict et al.). In a reddening-free V,I
relation we find that the coefficient of logP is the same within the
uncertainties in our Galaxy as in the LMC, contrary to some previous
suggestions. Cepheids in the inner region of NGC4258 with near solar
metallicities (Macri et al.) confirm this result. We obtain a zero-point for
the reddening-free relation and apply it to Cepheids in galaxies used by
Sandage et al. to calibrate the absolute magnitudes of SNIa and to derive the
Hubble constant. We revise their result from 62 to 70+/-5 km/s/Mpc. The
Freedman et al. 2001 value is revised from 72 to 76+/-8 km/s/Mpc. These results
are insensitive to Cepheid metallicity corrections. The Cepheids in the inner
region of NGC4258 yield a modulus of 29.22+/-0.03(int) compared with a
maser-based modulus of 29.29+/-0.15. Distance moduli for the LMC, uncorrected
for any metallicity effects, are; 18.52+/-0.03 from a reddening-free relation
in V,I; 18.47+/-0.03 from a period-luminosity relation at K; 18.45+/-0.04 from
a period-luminosity-colour relation in J,K. Adopting a metallicity correction
in V,I from Marci et al. leads to a true LMC modulus of 18.39+/-0.05.Comment: 9 pages, 1 figure, on-line material from [email protected].
Accepted for MNRA
New formulae for the Hubble Constant in a Euclidean Static Universe
It is shown that the Hubble constant can be derived from the standard
luminosity function of galaxies as well as from a new luminosity function as
deduced from the mass-luminosity relationship for galaxies. An analytical
expression for the Hubble constant can be found from the maximum number of
galaxies (in a given solid angle and flux) as a function of the redshift. A
second analytical definition of the Hubble constant can be found from the
redshift averaged over a given solid angle and flux. The analysis of two
luminosity functions for galaxies brings to four the new definitions of the
Hubble constant. The equation that regulates the Malmquist bias for galaxies is
derived and as a consequence it is possible to extract a complete sample. The
application of these new formulae to the data of the two-degree Field Galaxy
Redshift Survey provides a Hubble constant of $( 65.26 \pm 8.22 ) \mathrm{\ km\
s}^{-1}\mathrm{\ Mpc}^{-1}$ for a redshift lower than 0.042. All the results
are deduced in a Euclidean universe because the concept of space-time curvature
is not necessary as well as in a static universe because two mechanisms for the
redshift of galaxies alternative to the Doppler effect are invoked.Comment: 27 pages 10 Figure
- …