15,497 research outputs found
A numerical adaptation of SAW identities from the honeycomb to other 2D lattices
Recently, Duminil-Copin and Smirnov proved a long-standing conjecture by
Nienhuis that the connective constant of self-avoiding walks on the honeycomb
lattice is A key identity used in that proof depends on
the existence of a parafermionic observable for self-avoiding walks on the
honeycomb lattice. Despite the absence of a corresponding observable for SAW on
the square and triangular lattices, we show that in the limit of large
lattices, some of the consequences observed on the honeycomb lattice persist on
other lattices. This permits the accurate estimation, though not an exact
evaluation, of certain critical amplitudes, as well as critical points, for
these lattices. For the honeycomb lattice an exact amplitude for loops is
proved.Comment: 21 pages, 7 figures. Changes in v2: Improved numerical analysis,
giving greater precision. Explanation of why we observe what we do. Extra
reference
Classical correlations of defects in lattices with geometrical frustration in the motion of a particle
We map certain highly correlated electron systems on lattices with
geometrical frustration in the motion of added particles or holes to the
spatial defect-defect correlations of dimer models in different geometries.
These models are studied analytically and numerically. We consider different
coverings for four different lattices: square, honeycomb, triangular, and
diamond. In the case of hard-core dimer covering, we verify the existed results
for the square and triangular lattice and obtain new ones for the honeycomb and
the diamond lattices while in the case of loop covering we obtain new numerical
results for all the lattices and use the existing analytical Liouville field
theory for the case of square lattice.The results show power-law correlations
for the square and honeycomb lattice, while exponential decay with distance is
found for the triangular and exponential decay with the inverse distance on the
diamond lattice. We relate this fact with the lack of bipartiteness of the
triangular lattice and in the latter case with the three-dimensionality of the
diamond. The connection of our findings to the problem of fractionalized charge
in such lattices is pointed out.Comment: 6 pages, 6 figures, 1 tabl
Prefect Klein tunneling in anisotropic graphene-like photonic lattices
We study the scattering of waves off a potential step in deformed honeycomb
lattices. For small deformations below a critical value, perfect Klein
tunneling is obtained. This means that a potential step in any direction
transmits waves at normal incidence with unit transmission probability,
irrespective of the details of the potential. Beyond the critical deformation,
a gap in the spectrum is formed, and a potential step in the deformation
direction reflects all normal-incidence waves, exhibiting a dramatic transition
form unit transmission to total reflection. These phenomena are generic to
honeycomb lattice systems, and apply to electromagnetic waves in photonic
lattices, quasi-particles in graphene, cold atoms in optical lattices
- …