437,907 research outputs found

    Toward a test of angular momentum coherence in a twin-atom interferometer

    Full text link
    We present a scheme well-suited to investigate quantitatively the angular momentum coherence of molecular fragments. Assuming that the dissociated molecule has a null total angular momentum, we investigate the propagation of the corresponding atomic fragments in the apparatus. We show that the envisioned interferometer enables one to distinguish unambiguously a spin-coherent from a spin-incoherent dissociation, as well as to estimate the purity of the angular momentum density matrix associated with the fragments. This setup, which may be seen as an atomic analogue of a twin-photon interferometer, can be used to investigate the suitability of molecule dissociation processes -- such as the metastable hydrogen atoms H(22S2^2 S)-H(22S2^2 S) dissociation - for coherent twin-atom optics.Comment: 6 pages, 3 Figures. Final version accepted for publication in Europhysics Letter

    H2_2 dissociation over Au-nanowires and the fractional conductance quantum

    Full text link
    The dissociation of H2_2 molecules on stretched Au nanowires and its effect on the nanowire conductance are analyzed using a combination of Density Functional (DFT) total energy calculations and non-equilibrium Keldish-Green function methods. Our DFT simulations reproduce the characteristic formation of Au monoatomic chains with a conductance close to % the conductance quantum G0=2e2/hG_0 = 2e^2/h. These stretched Au nanowires are shown to be better catalysts for H2_2 dissociation than Au surfaces. This is confirmed by the nanowire conductance evidence: while not affected practically by molecular hydrogen, atomic hydrogen induces the appearance of fractional conductances (G∼0.5G0G \sim 0.5 G_0) as observed experimentally.Comment: 4 pages, 3 figure

    Adsorption and diffusion of H2O molecule on the Be(0001) surface: A density-functional theory study

    Full text link
    Using first-principles calculations, we systematically study the adsorption behavior of a single molecular H2_{2}O on the Be(0001) surface. We find that the favored molecular adsorption site is the top site with an adsorption energy of about 0.3 eV, together with the detailed electronic structure analysis, suggesting a weak binding strength of the H2_{2}O/Be(0001) surface. The adsorption interaction is mainly contributed by the overlapping between the ss and pzp_{z} states of the top-layer Be atom and the molecular orbitals 1b1b_{1} and 3a1a_{1} of H2_{2}O. The activation energy for H2_{2}O diffusion on the surface is about 0.3 eV. Meanwhile, our study indicates that no dissociation state exists for the H2_{2}O/Be(0001) surface.Comment: 10 pages, 4 figure

    Evolution and Spectral Response of a Steam Atmosphere for Early Earth with a coupled climate-interior model

    Get PDF
    The evolution of Earth's early atmosphere and the emergence of habitable conditions on our planet are intricately coupled with the development and duration of the magma ocean phase during the early Hadean period (4 to 4.5 Ga). In this paper, we deal with the evolution of the steam atmosphere during the magma ocean period. We obtain the outgoing longwave radiation using a line-by-line radiative transfer code GARLIC. Our study suggests that an atmosphere consisting of pure H2_{2}O, built as a result of outgassing extends the magma ocean lifetime to several million years. The thermal emission as a function of solidification timescale of magma ocean is shown. We study the effect of thermal dissociation of H2_{2}O at higher temperatures by applying atmospheric chemical equilibrium which results in the formation of H2_{2} and O2_{2} during the early phase of the magma ocean. A 1-6\% reduction in the OLR is seen. We also obtain the effective height of the atmosphere by calculating the transmission spectra for the whole duration of the magma ocean. An atmosphere of depth ~100 km is seen for pure water atmospheres. The effect of thermal dissociation on the effective height of the atmosphere is also shown. Due to the difference in the absorption behavior at different altitudes, the spectral features of H2_{2} and O2_{2} are seen at different altitudes of the atmosphere. Therefore, these species along with H2_{2}O have a significant contribution to the transmission spectra and could be useful for placing observational constraints upon magma ocean exoplanets.Comment: 22 pages, 17 Figures, accepted for publication in ApJ on March

    Conserved Vibrational Coherence in the Ultrafast Rearrangement of 2-Nitrotoluene Radical Cation

    Get PDF
    2-Nitrotoluene (2-NT) is a good model for both photolabile protecting groups for organic synthesis and the military explosive 2,4,6-trinitrotoluene (TNT). In addition to the direct C−NO2 bond-cleavage reaction that initiates detonation in TNT, 2-NT undergoes an H atom attack reaction common to the photolabile 2-nitrobenzyl group, which forms the aci-nitro tautomer. In this work, femtosecond pump−probe measure- ments with mass spectrometric detection and density functional theory (DFT) calculations demonstrate that the initially prepared vibrational coherence in the 2-NT radical cation (2- NT+) is preserved following H atom attack. Strong-field adiabatic ionization is used to prepare 2-NT+, which can overcome a modest 0.76 eV energy barrier to H atom attack to form the aci-nitro tautomer as soon as ∼20−60 fs after ionization. Once formed, the aci-nitro tautomer spontaneously loses −OH to form C7H6NO+, which exhibits distinctly faster oscillations in its ion yield (290 fs period) as compared to the 2-NT+ ion (380 fs period). The fast oscillations are attributed to the coherent torsional motion of the aci-nitro tautomer, which has a significantly faster computed torsional frequency (86.9 cm−1) than the 2- NT+ ion (47.9 cm−1). Additional DFT calculations identify reaction pathways leading to the formation of the dissociation products C7H6NO+, C7H7+, and C6H6N+. Collectively, these results reveal a rich picture of coherently and incoherently driven dissociation pathways in 2-NT+

    Fragmentation of relativistic nuclei in peripheral interactions in nuclear track emulsion

    Full text link
    The technique of nuclear track emulsions is used to explore the fragmentation of light relativistic nuclei down to the most peripheral interactions - nuclear "white" stars. A complete pattern of therelativistic dissociation of a 8^8B nucleus with target fragment accompaniment is presented. Relativistic dissociation 9^{9}Be→2α\to2\alpha is explored using significant statistics and a relative contribution of 8^{8}Be decays from 0+^+ and 2+^+ states is established. Target fragment accompaniments are shown for relativistic fragmentation 14^{14}N→\to3He+H and 22^{22}Ne→\to5He. The leading role of the electromagnetic dissociation on heavy nuclei with respect to break-ups on target protons is demonstrated in all these cases. It is possible to conclude that the peripheral dissociation of relativistic nuclei in nuclear track emulsion is a unique tool to study many-body systems composed of lightest nuclei and nucleons in the energy scale relevant for nuclear astrophysics.Comment: 15 pages, 4 figures, 4 tables, conference: Relativistic nuclear physics: from Nuclotron to LHC energies, Kiev, June 18-22, 200
    • …
    corecore