7,478,870 research outputs found

    Chemical tracers in proto-brown dwarfs: CO, ortho-H2_{2}CO, para-H2_{2}CO, HCO+^{+}, CS observations

    Full text link
    We present a study of the CO isotopologues and the high-density tracers H2_{2}CO, HCO+^{+}, and CS in Class 0/I proto-brown dwarfs (proto-BDs). We have used the IRAM 30m telescope to observe the 12^{12}CO (2-1), 13^{13}CO (2-1), C18^{18}O (2-1), C17^{17}O (2-1), H2_{2}CO (3-2), HCO+^{+} (3-2), and CS (5-4) lines in 7 proto-BDs. The hydrogen column density for the proto-BDs derived from the CO gas emission is \sim2-15 times lower than that derived from the dust continuum emission, indicating CO depletion from the gas-phase. The mean H2_{2}CO ortho-to-para ratio is \sim3 for the proto-BDs and indicates gas-phase formation for H2_{2}CO. We have investigated the correlations in the molecular abundances between the proto-BDs and protostars. Proto-BDs on average show a factor of \sim2 higher ortho-to-para H2_{2}CO ratio than the protostars. Possible explanations include a difference in the H2_{2}CO formation mechanism, spin-selective photo-dissociation, self-shielding effects, or different emitting regions for the ortho and para species. There is a tentative trend of a decline in the HCO+^{+} and H2_{2}CO abundances with decreasing bolometric luminosity, while the CS and CO abundances show no particular difference between the proto-BDs and protostars. These trends reflect the scaled-down physical structures for the proto-BDs compared to protostars and differences in the peak emitting regions for these species. The C17^{17}O isotopologue is detected in all of the proto-BDs as well as the more evolved Class Flat/Class II BDs in our sample, and can probe the quiescent gas at both early and late evolutionary stages.Comment: Accepted in MNRAS. arXiv admin note: text overlap with arXiv:1809.1016

    Increased H2_2CO production in the outer disk around HD 163296

    Get PDF
    Three formaldehyde lines were observed (H2_2CO 303_{03}--202_{02}, H2_2CO 322_{22}--221_{21}, and H2_2CO 321_{21}--220_{20}) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5 arcsecond (60 AU) spatial resolution. H2_2CO 303_{03}--202_{02} was readily detected via imaging, while the weaker H2_2CO 322_{22}--221_{21} and H2_2CO 321_{21}--220_{20} lines required matched filter analysis to detect. H2_2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2_2CO emission is likely caused by an optically thick dust continuum. The H2_2CO radial intensity profile shows a peak at 100 AU and a secondary bump at around 300 AU, suggesting increased production in the outer disk. Different parameterizations of the H2_2CO abundance were compared to the observed visibilities with χ2\chi^2 minimization, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2_2CO chemistry. Similar models were applied to ALMA Science Verification data of C18^{18}O. In all modeling scenarios, fits to the H2_2CO data show an increased abundance in the outer disk. The overall best-fit H2_2CO model shows a factor of two enhancement beyond a radius of 270±\pm20 AU, with an inner abundance of 2 ⁣ ⁣5×10122\!-\!5 \times 10^{-12}. The H2_2CO emitting region has a lower limit on the kinetic temperature of T>20T > 20 K. The C18^{18}O modeling suggests an order of magnitude depletion in the outer disk and an abundance of 4 ⁣ ⁣12×1084\!-\!12 \times 10^{-8} in the inner disk. The increase in H2_2CO outer disk emission could be a result of hydrogenation of CO ices on dust grains that are then sublimated via thermal desorption or UV photodesorption, or more efficient gas-phase production beyond about 300 AU if CO is photodisocciated in this region

    An electron-deficient triosmium cluster containing the thianthrene ligand: Synthesis, structure and reactivity of [Os₃(CO)₉(μ3-η2-C₁₂H₇S₂)(μ-H)]

    Get PDF
    Reaction of [Os₃(CO)₁₀(CH₃CN)₂] with thianthrene at 80 °C leads to the nonacarbonyl dihydride compound [Os₃(CO)₉(μ-3,4-η²-C₁₂H₆S₂)(μ-H)₂] (1) and the 46-electron monohydride compound [Os₃(CO)₉(μ₃-η²-C₁₂H₇S₂)(μ-H)] (2). Compound 2 reacts reversibly with CO to give the CO adduct [Os₃(CO)₁₀(μ-η²-C₁₂H₇S₂)(μ-H)] (3) whereas with PPh₃ it gives the addition product [Os₃(CO)₉)(PPh₃)(μ-η²-C₁₂H₇S₂)(μ-H)] (4) as well as the substitution product 1,2-[Os₃(CO)₁₀ ((PPh₃)₂] (5) Compound 2 represents a unique example of an electron-deficient triosmium cluster in which the thianthrene ring is bound to cluster by coordination of the sulfur lone pair and a three-center-two-electron bond with the C(2) carbon which bridges the same edge of the triangle as the hydride. Electrochemical and DFT studies which elucidate the electronic properties of 2 are reported

    The preparation and characterisation of monomeric and linked metal carbonyl clusters containing the closo-Si2Co4 pseudo-octahedral core

    Get PDF
    PhSiH3 reacts with [Co₄(CO)₁₂] at 50 °C in hydrocarbon solvents to give [(µ₄-SiPh)₂Co₄(CO)₁₁], 2c, shown by an X-ray crystal structure determination to have a pseudo-octahedral Si₂Co₄ core. Substituted aryl-silanes behaved similarly. Mixtures of PhSiH₃, H₃SiC₆H₄SiH₃ and [Co₄(CO)₁₂] in a ca. 2 1 2 ratio gave the dimeric cluster [{Co₄(µ₄-SiPh)(CO)₁₁Si}₂C₆H₄], 3a, which has the two Si₂Co₄ cores linked by a C₆H₄ group to give a rigid molecule which an X-ray structure analysis shows to be over 23 Å long. Related dimers linked by –(CH₂)₈– groups were isolated from mixtures of PhSiH₃, α ,ω-(H₃Si)₂(CH₂)₈ and [Co₄(CO)₁₂]. Electrochemical studies show the two cluster units in 3a do not interact electronically

    Double Carbon−Hydrogen Activation of 2-Vinylpyridine: Synthesis of Tri- and Pentanuclear Clusters Containing the μ-NC\u3csub\u3e5\u3c/sub\u3eH\u3csub\u3e4\u3c/sub\u3eCH═C Ligand

    Get PDF
    Reactions of 2-vinylpyridine with the triruthenium complexes [Ru3(CO)12] and [Ru3(CO)10(μ-dppm)] leads to a previously unknown double carbon−hydrogen bond activation of the β-carbon of the vinyl group to afford the pentaruthenium and triruthenium complexes [Ru5(CO)14(μ4-C5H4CH═C)(μ-H)2] (1) and [Ru3Cl(CO)5(μ-CO)(μ-dppm)(μ3-NC5H4CH═C)(μ-H)] (2), respectively. Crystal structures reveal two different forms of bridging of the dimetalated 2-vinylpyridyl ligand, capping a square face in 1 and a triangular face in 2

    ATLASGAL-selected massive clumps in the inner Galaxy: VI. Kinetic temperature and spatial density measured with formaldehyde

    Get PDF
    We aim to directly determine the kinetic temperature and spatial density with formaldehyde for the \sim100 brightest ATLASGAL-selected clumps at 870 μ\mum representing various evolutionary stages of high-mass star formation. Ten transitions (JJ = 3-2 and 4-3) of ortho- and para-H2_2CO near 211, 218, 225, and 291 GHz were observed with the APEX 12 m telescope. Using non-LTE models with RADEX, we derive the gas kinetic temperature and spatial density using the measured p-H2_2CO 321_{21}-220_{20}/303_{03}-202_{02}, 422_{22}-321_{21}/404_{04}-303_{03}, and 404_{04}-303_{03}/303_{03}-202_{02} ratios. The gas kinetic temperatures derived from the p-H2_2CO 321_{21}-220_{20}/303_{03}-202_{02} and 422_{22}-321_{21}/404_{04}-303_{03} line ratios are high, ranging from 43 to >>300 K with an unweighted average of 91 ±\pm 4 K. Deduced TkinT_{\rm kin} values from the JJ = 3-2 and 4-3 transitions are similar. Spatial densities of the gas derived from the p-H2_2CO 404_{04}-303_{03}/303_{03}-202_{02} line ratios yield 0.6-8.3 ×\times 106^6 cm3^{-3} with an unweighted average of 1.5 (±\pm0.1) ×\times 106^6 cm3^{-3}. A comparison of kinetic temperatures derived from p-H2_2CO, NH3_3, and the dust emission indicates that p-H2_2CO traces a distinctly higher temperature than the NH3_3 (2,2)/(1,1) transitions and the dust, tracing heated gas more directly associated with the star formation process. The H2_2CO linewidths are found to be correlated with bolometric luminosity and increase with the evolutionary stage of the clumps, which suggests that higher luminosities tend to be associated with a more turbulent molecular medium. It seems that the spatial densities measured with H2_2CO do not vary significantly with the evolutionary stage of the clumps. However, averaged gas kinetic temperatures derived from H2_2CO increase with time through the evolution of the clumps.Comment: Accepted for publication in A&

    Quantized Conductance of a Single Magnetic Atom

    Full text link
    A single Co atom adsorbed on Cu(111) or on ferromagnetic Co islands is contacted with non-magnetic W or ferromagnetic Ni tips in a scanning tunneling microscope. When the Co atom bridges two non-magnetic electrodes conductances of 2e^2/h are found. With two ferromagnetic electrodes a conductance of e^2/h is observed which may indicate fully spin-polarized transport.Comment: 3 pages, 2 figure

    Synthesis and characterisation of isomeric cycloaurated complexes derived from the iminophosphorane Ph₃P=NC(O)Ph

    Get PDF
    Using different organomercury substrates, two isomeric cycloaurated complexes derived from the stabilised iminophosphorane Ph₃P NC(O)Ph were prepared. Reaction of Ph₃P NC(O)Ph with PhCH₂Mn(CO)₅ gave the manganated precursor (CO)₄Mn(2-C₆H₄C(O)N PPh₃), metallated on the C(O)Ph substituent, which yielded the organomercury complex ClHg(2-C₆H₄C(O)N PPh₃) by reaction with HgCl₂ in methanol. Transmetallation of the mercurated derivative with Me₄N[AuCl₄] gave the cycloaurated iminophosphorane AuCl₂(2-C₆H₄C(O)N PPh₃) with an exo PPh₃ substituent. The endo isomer AuCl₂(2-C₆H₄Ph₂P NC(O)Ph) [aurated on a PPh₃ ring] was obtained by an independent reaction sequence, involving reaction of the diarylmercury precursor Hg(2-C₆H₄P( NC(O)Ph)Ph₂)₂ [prepared from the known compound Hg(2-C₆H₄PPh₂)₂ and PhC(O)N₃] with Me₄N[AuCl₄]. Both of the isomeric iminophosphorane derivatives were structurally characterised, together with the precursors (2-HgClC₆H₄)C(O)N PPh₃ and (CO)₄Mn(2-C₆H₄C(O)N PPh₃). The utility of ³¹P NMR spectroscopy in monitoring reaction chemistry in this system is described
    corecore