320 research outputs found
Growth of high quality InAs quantum-dot multilayer structures on InP for infrared photodetector applications
We present a growth technique to improve the structural property of InP-based multilayer quantum-dot ͑QD͒ structures. A thin layer of AlGaInAs grown under a group-III stabilized condition can effectively smooth out the three-dimensional growth front caused by the QD formation. Thus, the AlGaInAs barrier layers with high crystal quality and smooth interfaces can be achieved. Using this technique, an InP-based QD infrared photodetector structure containing ten-period QD layers has been grown using molecular beam epitaxy, and its high structural and optical quality was confirmed by x-ray diffraction and photoluminescence measurements
Room-temperature InAs0.89Sb0.11 photodetectors for CO detection at 4.6 mu m. .
An InAs0.89Sb0.11 photovoltaic detector that operates at room temperature in the 2.5-5 mu m mid-infrared wavelength region is reported. The photodiode has an extended spectral response compared with other currently available III-V room-temperature detectors. In order to accommodate the large lattice mismatch between the InAs0.89Sb0.11 active region and the InAs substrate, a buffer layer with an intermediate composition was introduced into the structure. In this way, we obtained room-temperature photodiodes with a cutoff wavelength near 5 mu m, a peak responsivity of 0.8 A/W, and a detectivity of 1.26 x 10(9) cm Hz(1/2)/W. These devices could be effectively used as the basis of an optical sensor for the environmental monitoring of carbon monoxide at 4.6 mu m, or as a replacement for PbSe photoconductors. (C) 2000 American Institute of Physics. [S0003-6951(00)02332-9]
3-5족 화합물 반도체의 웨이퍼 접합과 에피택셜 리프트 오프를 통한 다중 파장 광 검출기
학위논문 (박사)-- 서울대학교 대학원 : 공과대학 재료공학부, 2019. 2. 윤의준.Group III-V compound semiconductors, having a band gap from ultraviolet to infrared regions, have been widely used as imagers to visualize a single band. With the recent arrival of the Internet-of-things (IOTs) era, new applications such as time of flight (TOF) sensors, normalized difference vegetation index (NVDI) and night vision systems have gained interest. Therefore, the importance of multicolor photodetectors is raised. To implement multicolor photodetectors, an epitaxy method has been commonly used with III-V compound semiconductors. For example, quantum wells, quantum dots and type-II based structures and metamorphically grown bulk heteroepitaxial structures have been employed. Although an epitaxy method seems to be quite simple, there are several problems including limitation of material choice due to the discrepancy of lattice constants between thin films and substrates, performance degradation originated from internal defects and complexity of growth. Therefore, to avoid these disadvantages of the epitaxy method, a heterogeneous integration method has been an alternative because the integration of devices grown on different substrates is possible. Thus, it has been considered to be a promising method to combine photodetectors with simple bulk structures. However, although there is a significant advantage to the heterogeneous integration method, current multicolor photodetectors have exhibited limitations regarding pixel density and vertical misalignment due to problems related to conventional integration methods. Therefore, in this thesis, the heterogeneous integration of III-V compound semiconductors was investigated for fabricating multicolor photodetectors with high pixel density and highly accurate alignment.
Firstly, a research on heterogeneous integration of GaAs based thin film devices with other substrates was carried out. We studied wafer bonding and epitaxial lift off process which have advantages including large area transferability, cost-effectiveness and high quality of layers compared with wafer splitting and transfer printing methods. To fabricate multicolor photodetectors on single substrates, a stable rigid-to-rigid heterogeneous integration method is highly required. However, there have only been few reports regarding rigid-to-rigid transfer by using epitaxial lift off due to the difficulty involving byproducts and gas bubbles generated during the wet etching of the sacrificial layer for wafer separation. This has been a hindrance compared with thin film on flexible substrates which can accelerate wafer separation by using strain and external equipment. In order to overcome this problem, high throughput epitaxial lift off process was proposed through a pre-patterning process and surface hydrophilization. The pre-patterning process can maximize the etching area of the AlAs sacrificial layer and rapidly remove bubbles. In addition, acetone, which is a hydrophilic solution, was mixed with hydrofluoric acid in order to reduce the surface contact angle and viscosity. It resulted in an effective penetration of the etching solution and the suppression of byproducts. Consequently, it was possible to transfer GaAs thin films on rigid substrates within 30 minutes for a 2 inch wafer which has been the fastest compared with previous reports. Also, using this template, electronic and optoelectronic devices were successfully fabricated and operated.
Secondly, we have studied to overcome restrictions of bulk photodetector for InSb binary material including the detection limit and cryogenic operation. To extend the detection limit of bulk InSb toward the LWIR range, the ideal candidate of III-V bulk materials is indium arsenide antimonide (InAsSb) material due to its corresponding band gaps ranging from SWIR to LWIR. By combining bulk InAsSb with other bulk materials with previously developed integration methods, we could ultimately fabricate a multicolor photodetector ranging from ultraviolet to LWIR with only bulk structures. Thus, in order to verify the viability of this material, a p-i-n structure based photodetector with an InAs0.81Sb0.19 absorption layer was grown on a GaAs substrate. To enhance an ability to be operated at a high temperature, an optimum InAlSb barrier layer was designed by technology computer aided design (TCAD). Also, InAsSb/InAlSb heterojunction photodetector was grown by molecular beam epitaxy (MBE). As a result, we have demonstrated the first room temperature operation of heterojunction photodetectors in MWIR range among InAsSb photodetectors with similar Sb compositions. Additionally, it has a higher responsivity of 15 mA/W compared with commercialized photodetectors. This MWIR photodetector with room temperature operability could help the reduction of the volume for final detector systems due to the elimination of Dewar used in InSb photodetectors. In other words, from this experiments, it is suggested that there is a strong potential of InAsSb bulk structures for detecting LWIR.
Finally, the study on the monolithic integration was carried out to verify the feasibility of multicolor photodetectors by integration of bulk structures. Among procured photodetectors with detection ranging from visible to MWIR at room temperature operation, visible GaAs and near-infrared InGaAs photodetector were used for establishing the optimized fabrication process due to materials process maturity. By using previously developed high throughput ELO process, GaAs photodetectors were transferred onto InGaAs photodetectors to form visible/near-infrared multicolor photodetectors. It was found that top GaAs PD and bottom InGaAs PD were vertically well aligned without an off-axis tilt in x-ray diffraction (XRD) measurement. Also, similar dark currents of each photodetector were observed compared with reference photodetectors. Finally, with incidence of laser illumination, photoresponses were clearly revealed in visible band and near-infrared band of material characteristics, respectively. These results suggested high throughput ELO process enables the monolithic integration of bulk based multicolor photodetectors on a single substrate with high pixel density and nearly perfect vertical alignment. In the future, depending on the target applications, photodetectors with desired wavelengths could be simply grown as bulk structures and fabricated for multicolor imagers.자외선부터 적외선 영역의 밴드갭을 가진 3-5족 화합물 반도체는 단일 파장대역을 시각화하는 imager 로 널리 사용되고 있다. 그러나, 최근 사물인터넷 시대가 도래함에 따라, time of flight (TOF) 센서, 식생지수 측정, night vision 등의 새로운 응용처가 증가하고 있다. 따라서 기존의 단일파장 광 검출기가 아닌, 다중파장 광 검출기의 중요성이 증대되고 있으며, 이런 다중파장 광 검출기를 구현하기 위해서 3-5족을 화합물 반도체의 epitaxy 방법이 흔히 사용되어 왔다. 예를 들어, 다른 격자 상수를 가진 벌크 구조를 metamorphic 성장법을 이용하여 성장하거나, 또는 양자우물, 양자점 그리고 type-II 기반의 구조가 적용되어야만 했다. Epitaxy 방법은 매우 간단한 방법처럼 보이지만, 기판과 성장하려는 물질간의 격자상수의 차이로 인해 제한되는 물질 선택, 내부 결함에 의한 성능감소 그리고 성장의 복잡함 등 여러 문제가 존재한다. 그래서, epitaxy 방법의 단점들을 회피하기 위하여, 다른 기판에서 성장된 소자의 집적을 가능하게 할 수 있는, 이종 집적 방법이 대안이 되어왔다. 이를 이용하면, 간단한 벌크 구조의 광 검출기를 결합할 수 있기 때문에 매우 유망한 방법으로 여겨지고 있다. 그러나, 이종 집적 방법의 뛰어난 장점에도 불구하고, 현재의 다중파장 광 검출기는 집적 방법의 문제로 수직 정렬 오차 및 픽셀 밀도 측면에서 한계점을 보여주었다. 따라서, 본 논문에서는 고밀도/ 고정렬된 다중파장 광 검출기 제작을 위한 3-5족 기반의 화합물 반도체의 이종 집적 방법에 대한 연구를 진행하였다.
먼저, 3-5족 GaAs 기반의 박막소자를 다른 기판과 이종 집적하는 연구를 수행하였다. 기존의 wafer splitting 과 transfer printing 방법과 비교했을 때 대면적 전사, 저렴한 가격 그리고 고품질 layer등 장점들이 있는 웨이퍼 접합과 에피택셜 리프트 오프 (epitaxial lift off) 방법에 대해서 연구를 하였다. 단일 기판상에 다중파장 광 검출기를 제작하기 위해서는, rigid-to-rigid 이종 집적 방법이 반드시 필요하다. 그러나, strain 과 외부 장치를 이용하여 기판 분리를 가속화 시킬 수 있는 유연기판 상의 박막전사와 달리, 습식 식각 시 생성되는 부산물들과 가스 기포들 때문에 에피택셜 리프트 오프 방법을 이용한 rigid-to-rigid 전사에 대해서는 매우 적은 결과만이 보고되었다. 이런 문제를 극복하기 위해서, pre-patterning 과정과 표면 친수화를 통한 고속 에피택셜 리프트 오프를 제안하였다. 이 pre-patterning 과정은 AlAs 희생층의 식각 영역을 극대화 시킬 수 있으며, 기포를 빠르게 제거할 수 있다. 그리고, 친수성 용액인 아세톤을 불산과 섞어주면 점도와 표면 접촉 각을 줄일 수 있다. 이것은 식각 용액의 효과적인 침투와 부산물을 억제시키는 결과를 보였다. 결과적으로, 2 인치 크기의GaAs 기반 박막들을 rigid 기판상에 30분 이내로 전사가 가능했으며 이는 기존의 보고들과 비교했을 때 가장 빠른 결과이다. 또한 이 템플릿을 이용하여 광/전자 소자를 성공적으로 제작 및 동작시켰다.
두 번째로, 기존의 InSb 물질을 이용한 벌크 구조의 광 검출기가 가진 파장한계 그리고 저온동작 등의 제약들을 극복하기 위한 연구를 진행하였다. 벌크 구조의 파장 한계를 원적외선 대역까지 늘이기 위한, 3-5족 물질 중 이상적인 물질은 인듐 아세나이드 안티모나이드 (indium arsenide antimonide) 이다. 왜냐하면 InAsxSb1-x는 SWIR 부터 LWIR 의 해당하는 밴드 갭을 가지고 있기 때문이다. 이 물질 기반의 구조와 개발된 공정을 사용하면, 우리는 궁극적으로 자외선부터 원적외선까지의 영역을 벌크 구조만을 사용하여 다중파장 광 검출기를 구현할 수 있게 된다. 따라서, 이 물질의 가능성을 검증하기 위해서, InAs0.81Sb0.19 의 흡수층을 가진 p-i-n 구조 기반의 광 검출기를 GaAs 기판상에서 성장하였다. 고온에서 동작 특성을 향상시키기 위하여, 최적의 InAlSb 배리어를 TCAD로 디자인하였다. 이러한, InAsSb/InAlSb 이종 접합 광 검출기는 분자선 증착 장비를 이용하여 성장되었다. 그 결과로, 우리는 비슷한 Sb 조성을 가진 InAsSb 기반의 광 검출기들 중에서, 처음으로 중적외선 대역의 이종 접합 구조의 광 검출기를 상온 동작 하는 것을 시연하였다. 게다가, 그것은 상용화 된 광 검출기보다 높은 광 응답 특성(15 mA/W)을 보여주었다. 이 상온에서 동작하는 중적외선 광 검출기는 InSb 광 검출기에 사용되는 Dewar 를 제거함으로써, 최종 검출기 시스템의 부피를 감소 시킬 수 있다. 이 실험으로부터, 벌크 구조로 원적외선 대역을 검출하기 위한 InAsSb 물질의 큰 잠재성이 있다는 것을 의미한다.
마지막으로, 벌크 구조의 집적을 통한 다중파장 광 검출기의 실현이 가능한지 확인하기 위해서 모놀리식(monolithic) 집적에 관한 연구를 수행하였다. 확보된 상온 동작이 가능한 가시광선부터 MWIR 검출 파장을 가진 광 검출기들 중에서, 최적의 제작 순서를 확립하기 위해서 물질에 관한 성숙도가 높은 가시광선 GaAs 그리고 근적외선 InGaAs 광 검출기를 사용하였다. 가시광/근적외선 대역의 다중파장 광 검출기를 형성하기 위해서, GaAs 광 검출기를 InGaAs 광 검출기 상으로 개발된 고속 에피택셜 리프트 오프 기법을 사용하여 전사하였다. GaAs 광 검출기와 InGaAs 광 검출기는 off-axis 없이 수직으로 잘 정렬되었음을 x-ray 분광법을 이용하여 확인하였다. 또한, 각각의 광 검출기의 기준 소자들과 비교했을 때 비슷한 암 전류가 나타났다. 마지막으로, 레이저 입사를 통해, 두 개의 광 검출기 대한 광 반응은 물질 특성들에 따라 가시광과 근적외선에서 각각 명확하게 나타났다. 이러한 결과들은 고속 에피택셜 리프트 오프 기법이 높은 픽셀 밀도 및 거의 완벽한 수직 정렬도를 갖는 한 기판상의 벌크 기반의 다중파장 광 검출기를 집적할 수 있다는 것을 의미한다. 미래의 목표하는 응용처에 따라, 원하는 파장들을 갖는 광 검출기를 벌크 구조로 간단하게 성장할 수 있고, 다중파장 이미징 시스템을 제작 할 수 있다.List of Figures i
Chapter.1 Introduction 1
1.1 Photodetectors based on III-V compound semiconductors 1
1.2 Imaging applications 4
1.2.1. Single color imaing 4
1.2.2. Multicolor imaing 4
1.2.3. Development trend of photodetectors 5
1.3 Approches for forming multicolor photodectors 9
1.3.1. Epitaxy 9
1.3.2. Heterogeneous integration 17
1.3.3. Summary of each method 21
1.4 Overview of heterogeneous integration technology 23
1.4.1. Introduction 23
1.4.2. Direct bonding 24
1.4.3. Cold-weld bonding 26
1.4.4. Eutectic bonding 26
1.4.5. Adhesive bonding 28
1.4.7. Wafer splitting 31
1.4.8. Epitaxial lift off (ELO) 33
1.4.9. Benchmark of differenct heterogeneous intergration methods 35
1.5 Thesis overview 37
1.6 Bibliography 40
Chapter. 2 Method for heterogeneous integration of III-V compound semiconductors on other substrates 45
2.1 Introduction 45
2.1.1 The origin of low throughput in conventional ELO 46
2.1.2 Previous works for ehancement of ELO throughput 48
2.1.3 Approach: high-throughput ELO process 53
2.1.4 Experimental procedure 55
2.2 Results and discussion 57
2.3 Summary 65
2.4 Biblography 66
Chapter. 3 Verification of thin film devices by using a high throughput heterogeneous integration method 70
3.1 Introduction 70
3.2 Growth of device structures and heterogeneous integration 72
3.2.1. Device structures 72
3.2.2. Wafer bonding and ELO 74
3.3 Y2O3 bonded HEMTs on Si substrate 75
3.3.1 Fabrication process 75
3.3.2. Material characterization of HEMTs on Si 76
3.3.3. Electrical characterization of HEMTs on Si 80
3.3.4. Investigation of wafer reusability by using HEMT structure 83
3.4 Pt/Au bonded optoelectonic devices 86
3.4.1. Fabrication process of solar cells and HPTs on Si 86
3.4.2. Evaluation of Pt/Au metal bonding 88
3.4.3. Characterization of solar cells and HPTs 91
3.5 Estimation of production cost via recycling III-V wafers 95
3.6 Summary 101
3.7 Bibliography 102
Chapter. 4 Design and characterization of III-V based photodtectors 106
4.1 Introduction 106
4.1.1. The potential of Induim arsenide antimonide (InAsSb) 106
4.1.2. Challenges of InAsSb p-i-n PDs for compact detector systems 110
4.2 Barrier layer design and material characterization for growing HJPDs 113
4.2.1. Simulation of an optimum barrier layer for InAs0.8Sb0.2 113
4.2.2. Growth of a high quality InAsSb layer with an AlGaSb buffer layer grown on GaAs substrates 115
4.2.3. Ohmic contact formation with metal species 120
4.2.4. Growth and fabrication of InAsSb based HJPDs 126
4.3 Analysis of electrical and optical characteristics for fabricated PDs 129
4.4 Summary 138
4.5 Bibliography 139
Chapter. 5 Monolithic integration of visible/near-infrared photodetectors 145
5.1 Introduction 145
5.2 Fabrication process and material characterization of multicolor PD 148
5.3 Analysis of the electrical and optical characteristics of the fabricated multicolor PDs 154
5.4 Summary 163
5.5 Bibliography 164
Chapter. 6 Conclusions 169
국 문 초 록 172Docto
Antimonide-based superlattice membranes for infrared applications
Semiconductor membranes offer an interesting materials and device development platform due to their ability to integrate dissimilar materials through a print, stamp and transfer process. There is a lot of interest in integrating antimonide based type-II superlattices (T2SL) onto inexpensive substrates, such as Si, to not only undertake fundamental studies into the optical, electronic and structural properties of the superlattices but also to fabricate wafer-level infrared (IR) photodetectors. An effective approach to transfer type-II superlattice membranes (T2SL-M) onto alternate substrates is based on membrane release from the native GaSb substrate followed by the transfer to a new host substrate. In this work, I have transferred InAs/GaSb and InAs/InAsSb T2SLs with different in-plane geometries from a GaSb substrate to a variety of host substrates, including Si, polydimethylsiloxane and metal coated surfaces. Electron microscopy shows structural integrity of transferred membranes with thicknesses ranging from 100 nm to 2.5 µm and lateral sizes from 24x24 µm2 v to 1x1 cm2 . Atomic force and electron microscopy reveal the excellent quality of the membrane interface with the new host. The crystalline structure of the membrane is not altered by the fabrication process, and minimal elastic relaxation occurs during the release step, as demonstrated by X-ray diffraction and mechanical modeling. I have also used the antimonide superlattice membranes to realize wafer level infrared detectors on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al0.6Ga0.4Sb sacrificial layer on a GaSb host substrate. Following the growth, I have transferred the individual pixels using an epitaxial lift-off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. I have done structural and optical characterization of the transferred pixels using an optical microscope, scanning electron microscopy, and photo luminescence. The interface between the transferred pixels and the new substrate is abrupt, and no significant degradation in the optical quality is observed. Next, I have fabricated an indium-bump-free membrane detector using this approach. Spectral response measurements and the current-voltage characteristics of an infrared photodetector, based on the InAs/InAsSb superlattice, bonded to Si demonstrates the functionality of transferred membranes in the infrared range. The performance of the membrane detector is compared to a control detector using the as-grown epitaxial material. The proposed approach to fabricate Indium-bump free detectors could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors. Since the release of T2SL-M is achieved using a high etch selectivity between the active region and the Al-containing sacrificial layers, a poor selectivity between the sacrificial layers and a variety of T2SL active regions will result in significant damage to the active layer of an IR detector. I have developed a novel two-step etching process to protect the T2SL-M while the sacrificial layer is etched away. In this process, both the top surface and the sidewalls of the membrane are coated with a hard-baked polymer film (i.e., photoresist), and therefore they are unexposed to the chemical etchant. For Al and Ga containing compounds, with no membrane isolation, this process leads to rough sidewalls which are expected to increase surface recombination in the membrane and therefore increases the dark current density of an IR detector. I have quantified this effect by characterizing T2SL IR detectors fabricated on isolated and non-isolated mesas. A comparative analysis of the dark current density measured for the two devices signify the effect of having exposed sidewalls during membrane release. These experimental results are consistent with theoretical calculations which show a relative enhancement of surface recombination with increasing roughness of the membrane sidewalls. The development of these Sb based T2SL membranes opens up new exciting prospects for material science studies and device architecture integration
High-performance III-V quantum structures and devices grown on Si substrates
III-V material laser monolithically grown on silicon (Si) substrate is urgently required to achieve low-cost and high-yield Si photonics. Due to the material dissimilarity between III-V component and Si, however, several challenges, such as dislocations and antiphase domains, remain to be solved during the epitaxial growth. In this regard, quantum dot (QD) laser diodes have been demonstrated with impressive characteristics of temperature insensitive, low power consumption and defects tolerance, and thus QD material is regards as an ideal material for laser directly grown on Si substrate. In this thesis, both QD laser diodes with 1.3 µm wavelength and quantum dot cascade laser with mid-infrared wavelength have been investigated.
To understand the unique advantages of QD material, the comparison of QD and quantum well (QW) materials and devices grown on Si substrate is carried out in chapter 3. Based on identical fabrication and growth conditions, Si-based QW devices are unable to operate at room temperature, while the room-temperature Si-based QD is obtained with threshold current density of 160 A/cm2 and single-facet output power of >100 mW under continuous wave (c.w.) injection current driving. Besides, Si-based QD laser also shows remarkable temperature stability which the c.w. operation temperature reaches 66 ℃. The results point out that QD material has great potential in monolithic growth of III-V on Si for silicon photonics. Then, a novel approach of all-MBE grown QD laser on Si substrate is reported in chapter 4, with the optimization of buffer layer. The all-MBE grown QD laser on on-axis Si substrate with maximum operation temperature of 130 oC is achieved by utilizing thin Germanium (Ge) buffer.
The mid-infrared silicon photonics has wide applications and market, but the lack of Si-based mid-infrared laser is a subsistent problem. Because the bandgap of conventional QW and QD materials is impossible to match the wavelength in mid-infrared range (3 µm to 20 µm), the Si-based quantum cascade laser (QCL) devices is regarded as an effective method to meet the requirement. Therefore, the high-performance QCL is firstly explored in chapter 5, and then, several methods in fabrication process are researched to enhance the performance for QCL devices. After the optimization of structure design and development of fabrication process, the InP-based QCL shows impressive properties with 600 mW emission power and over 100℃ operation temperature under c.w. mode. Following the previous work on Si-based QD laser, the quantum dot cascade laser (QDCL) is expected as a suitable solution for Si-based QCL devices. With the continuous improvement in structure design, the QDCL with multilayer QDs shows comparable performance, compared with conventional QCL devices. It is noted that the QDCL generates both TE and TM modes output, which is a breakthrough towards surface emitting QCL because the common QW-based QCL has only-TM emission in principle. Finally, the Si-based QCL is attempted with different structure design based on the pervious results
Photodetectors at Terahertz frequencies based on one-dimensional and two-dimensional nano systems
Инфракрасные детекторы на основе тройных полупроводниковых квантовых структур
Удосконалення технології вирощування напівпровідникових багатошарових структур сприяє створенню нового класу приймачів інфрачервоного випромінювання - детекторів на квантових структурах. Сучасний етап розробок ІЧ-приймачів характеризується активними дослідженнями матеріалів для різних наноструктур. Найбільш затребуваним напівпровідниковим матеріалом для створення традиційних ФД ІЧ-діапазону є HgCdTe. Однак низький відсоток виходу придатних структур на основі HgCdTe підвищує вартість приладу. Розглянуто стан розробок ІЧ-детекторів на квантових структурах із застосуванням трикомпонентних напівпровідникових твердих розчинів. Представлені максимальні значення виявляючої здатності традиційних ФД і ФД на квантових структурах. Проведено аналіз параметрів для різних матеріалів і типів структур.The development of growth process of multilayer semiconductor structures enables investigation of a new class of infrared detectors – detectors on quantum structures. The current trends of infrared receivers’ development are caused by active material research for a variety of nanostructures. The current state of development of infrared quantum structure detectors using ternary semiconductor alloys is considered. The maximal detectivity values of traditional detectors and quantum structure detectors are presented. The analysis of parameters for different types of materials and structures is performed.Совершенствование технологии выращивания полупроводниковых многослойных структур способствует созданию нового класса приемников инфракрасного излучения – детекторов на квантовых структурах. Современный этап разработок ИК-приемников характеризуется активными исследованиями материалов для различных наноструктур. Наиболее востребованным полупроводниковым материалом для создания традиционных ФД ИК-диапазона является HgCdTe. Однако низкий процент выхода годных структур на основе HgCdTe повышает стоимость прибора. Рассмотрено состояние разработок ИК-детекторов на квантовых структурах с применением трехкомпонентных полупроводниковых твердых растворов. Представлены максимальные значения обнаружительной способности традиционных ФД и ФД на квантовых структурах. Проведен анализ параметров для различных материалов и типов структур
- …