17,064 research outputs found

    IMPLEMENTATION OF SUPPORT VECTOR MACHINE AND HARMONY SEARCH FOR CATARACT SEVERITY CLASSIFICATION IN FUNDUS IMAGES

    Get PDF
    Cataract is a condition that causes clouding of the lens of the eye and is a leading cause of blindness, including in Indonesia. Cataract diagnosis is often inconsistent between ophthalmologists due to personal experience. This research proposes a Support Vector Machine (SVM) based classification system and Harmony Search metaheuristic algorithm to optimize the weight vector 'w' on the SVM hyperplane as a supporting tool for cataract diagnosis. The research data comes from Kaggle which includes normal eye fundus images and cataracts with mild-moderate and severe levels. The research stages include image conversion from RGB to Grayscale, image enhancement with Histogram Equalization and GLCE, and feature extraction using GLCM and Haar Wavelet Transform, and unbalanced data is balanced by the SMOTEENN method. The results showed that Harmony Search successfully improved SVM accuracy compared to Conventional SVM using Gradient Descent. Accuracy increased by 18% from 0.53 to 0.71 on unbalanced data, and by 13% from 0.67 to 0.80 on balanced data. In addition, Harmony Search can improve computational time efficiency due to its ability to explore space globally

    Random Adjustment - Based Chaotic Metaheuristic Algorithms for Image Contrast Enhancement

    Get PDF
    Metaheuristic algorithm is a powerful optimization method, in which it can solve problemsby exploring the ordinarily large solution search space of these instances, that are believed tobe hard in general. However, the performances of these algorithms signicantly depend onthe setting of their parameter, while is not easy to set them accurately as well as completelyrelying on the problem\u27s characteristic. To ne-tune the parameters automatically, manymethods have been proposed to address this challenge, including fuzzy logic, chaos, randomadjustment and others. All of these methods for many years have been developed indepen-dently for automatic setting of metaheuristic parameters, and integration of two or more ofthese methods has not yet much conducted. Thus, a method that provides advantage fromcombining chaos and random adjustment is proposed. Some popular metaheuristic algo-rithms are used to test the performance of the proposed method, i.e. simulated annealing,particle swarm optimization, dierential evolution, and harmony search. As a case study ofthis research is contrast enhancement for images of Cameraman, Lena, Boat and Rice. Ingeneral, the simulation results show that the proposed methods are better than the originalmetaheuristic, chaotic metaheuristic, and metaheuristic by random adjustment

    Palm print recognition based on harmony search algorithm

    Get PDF
    Due to its stabilized and distinctive properties, the palmprint is considered a physiological biometric. Recently, palm print recognition has become one of the foremost desired identification methods. This manuscript presents a new recognition palm print scheme based on a harmony search algorithm by computing the Gaussian distribution. The first step in this scheme is preprocessing, which comprises the segmentation, according to the characteristics of the geometric shape of palmprint, the region of interest (ROI) of palmprint was cut off. After the processing of the ROI image is taken as input related to the harmony search algorithm for extracting the features of the palmprint images through using many parameters for the harmony search algorithm, Finally, Gaussian distribution has been used for computing distance between features for region palm print images, in order to recognize the palm print images for persons by training and testing a set of images, The scheme which has been proposed using palmprint databases, was provided by College of Engineering Pune (COEP), the Hong Kong Polytechnic University (HKPU), Experimental results have shown the effectiveness of the suggested recognition system for palm print with regards to the rate of recognition that reached approximately 92.60%

    Modelling of Hybrid Meta heuristic Based Parameter Optimizers with Deep Convolutional Neural Network for Mammogram Cancer Detection

    Get PDF
    Breast cancer (BC) is the common type of cancer among females. Mortality from BC could be decreased by identifying and diagnosing it atan earlierphase. Different imaging modalities are used to detect BC, like mammography. Even withproven records as a BC screening tool, mammography istime-consuming and hasconstraints, namely lower sensitivity in women with dense breast tissue. Computer-Aided Diagnosis or Detection (CAD) system assistsaproficient radiologist to identifyBC at an earlier stage. Recently, the advancementin deep learning (DL)methodsareemployed to mammography assist radiologists to increase accuracy and efficiency. Therefore, this study presents a metaheuristic-based hyperparameter optimization with deep learning-based breast cancer detection on mammogram images (MHODL-BCDMI) technique. The presented MHODL-BCDMI technique mainly focused on the recognition and classification of breast cancer on digital mammograms. To achieve this, the MHODL-BCDMI technique employs pre-processing in two stages: Wiener Filter (WF) based noise elimination and contrast enhancement. Besides, the MHODL-BCDMI technique exploits densely connected networks (DenseNet201) model for feature extraction purposes. For BC classification and detection, a hybrid convolutional neural network with a gated recurrent unit (HCNN-GRU) model is used. Furthermore, three hyperparameter optimizers are employed namely cat swarm optimization (CSO), harmony search algorithm (HSA), and hybrid grey wolf whale optimization algorithm (HGWWOA). Finally, the U2Net segmentation approach is used for the classification of benign and malignant types of cancer. The experimental analysis of the MHODL-BCDMI method is tested on a digital mammogram image dataset and the outcomes are assessed in terms of diverse metrics. The simulation results highlighted the enhanced cancer detection performance of the MHODL-BCDMI technique over other recent algorithms

    Harmony Search-Based Cluster Initialization For Fuzzy C-Means Segmentation Of MR Images.

    Get PDF
    We propose a new approach to tackle the well known fuzzy c-means (FCM) initialization problem

    A Study on RGB Image Multi-Thresholding using Kapur/Tsallis Entropy and Moth-Flame Algorithm

    Get PDF
    In the literature, a considerable number of image processing and evaluation procedures are proposed and implemented in various domains due to their practical importance. Thresholding is one of the pre-processing techniques, widely implemented to enhance the information in a class of gray/RGB class pictures. The thresholding helps to enhance the image by grouping the similar pixels based on the chosen thresholds. In this research, an entropy assisted threshold is implemented for the benchmark RGB images. The aim of this work is to examine the thresholding performance of well-known entropy functions, such as Kapur’s and Tsallis for a chosen image threshold. This work employs a Moth-Flame-Optimization (MFO) algorithm to support the automatic identification of the finest threshold (Th) on the benchmark RGB image for a chosen threshold value (Th=2,3,4,5). After getting the threshold image, a comparison is performed against its original picture and the necessary Picture-Quality-Values (PQV) is computed to confirm the merit of the proposed work. The experimental investigation is demonstrated using benchmark images with various dimensions and the outcome of this study confirms that the MFO helps to get a satisfactory result compared to the other heuristic algorithms considered in this study

    3D Reconstruction: Novel Method for Finding of Corresponding Points using Pseudo Colors

    Get PDF
    This paper deals with the reconstruction of spatial coordinates of an arbitrary point in a scene using two images scanned by a 3D camera or two displaced cameras. Calculations are based on the perspective geom-etry. Accurate determination of corresponding points is a fundamental step in this process. The usually used methods can have a problem with points, which lie in areas without sufficient contrast. This paper describes our proposed method based on the use of the relationship between the selected points and area feature points. The proposed method finds correspondence using a set of feature points found by SURF. An algorithm is proposed and described for quick removal of false correspondences, which could ruin the correct reconstruction. The new method, which makes use of pseudo color image representation (pseudo coloring) has been proposed subsequently. By means of this method it is possible to significantly increase the color contrast of the surveyed image, and therefore add more information to find the correct correspondence. Reliability of the found correspondence can be verified by reconstruction of 3D position of selected points. Executed experiments confirm our assumption

    Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images

    Full text link
    corecore