166 research outputs found

    Gravitational field equations in a braneworld with Euler-Poincare term

    Full text link
    We present the effective gravitational field equations in a 3-brane world with Euler-Poincare term and a cosmological constant in the bulk spacetime. The similar equations on a 3-brane with Z2\mathbb{Z}_2 symmetry embedded in a five dimensional bulk spacetime were obtained earlier by Maeda and Torii using the Gauss-Coddazzi projective approach in the framework of the Gaussian normal coordinates. We recover these equations on the brane in terms of differential forms and using a more general coordinate setting in the spirit of Arnowitt, Deser and Misner (ADM). The latter allows for acceleration of the normals to the brane surface through the lapse function and the shift vector. We show that the gravitational effects of the bulk space are transmitted to the brane through the projected ``electric'' 1-form field constructed from the conformal Weyl curvature 2-form of the bulk space. We also derive the evolution equations into the bulk space for the electric 1-form field, as well as for the ``magnetic'' 2-form field part of the bulk Weyl curvature 2-form. As expected, unlike on-brane equations, the evolution equations involve terms determined by the nonvanishing acceleration of the normals in the ADM-type slicing of spacetime

    Exact Solutions in Five-Dimensional Axi-dilaton Gravity with Euler-Poincare Term

    Get PDF
    We examine the effective field equations that are obtained from the axi-dilaton gravity action with a second order Euler-Poincare term and a cosmological constant in all higher dimensions. We solve these equations for five-dimensional spacetimes possessing homogeneity and isotropy in their three-dimensional subspaces. For a number of interesting special cases we show that the solutions fall into two main classes: The first class consists of time-dependent solutions with spherical or hyperboloidal symmetry which require certain fine-tuning relations between the coupling constants of the model and the cosmological constant. Solutions in the second class are locally static and prove the validity of Birkhoff's staticity theorem in the axi-dilaton gravity. We also give a special class of static solutions, among them the well-known black hole solutions in which the usual electric charge is superseded by an axion charge.Comment: New formulas and references adde

    Dilaton Brane Cosmology with Second Order String Corrections and the Cosmological Constant

    Full text link
    We consider, in five dimensions, the effective action from heterotic string which includes quantum gravity corrections up to (a')^2. The expansion, in the string frame, is in terms of |a'R|, where R is the scalar curvature and uses the third order Euler density, next to the Gauss-Bonnet term. For a positive tension brane and infinite extra dimension, the logarithmic class of solutions is less dependent from fine-tuning problems than in previous formulations. More importantly, the model suggests that in the full non-perturbative formulation, the string scale can be much lower than the effective Planck mass, without the string coupling to be vanishingly small. Also a less severe fine-tuning of the brane tension in needed.Comment: 19 pages, 5 figures LaTeX. Accepted for publication in IJMP

    The consistency of codimension-2 braneworlds and their cosmology

    Get PDF
    We study axially symmetric codimension-2 cosmology for a distributional braneworld fueled by a localised 4D perfect fluid, in a 6D Lovelock theory. We argue that only the matching conditions (dubbed topological) where the extrinsic curvature on the brane has no jump describe a pure codimension-2 brane. If there is discontinuity in the extrinsic curvature on the brane, this induces inevitably codimension-1 distributional terms. We study these topological matching conditions, together with constraints from the bulk equations evaluated at the brane position, for two cases of regularisation of the codimension-2 defect. First, for an arbitrary smooth regularisation of the defect and second for a ring regularisation which has a cusp in the angular part of the metric. For a cosmological ansatz, we see that in the first case the coupled system is not closed and requires input from the bulk equations away from the brane. The relevant bulk function, which is a time-dependent angular deficit, describes the energy exchange between the brane and the 6D bulk. On the other hand, for the ring regularisation case, the system is closed and there is no leakage of energy in the bulk. We demonstrate that the full set of matching conditions and field equations evaluated at the brane position are consistent, correcting some previous claim in the literature which used rather restrictive assumptions for the form of geometrical quantities close to the codimension-2 brane. We analyse the modified Friedmann equation and we see that there are certain corrections coming from the non-zero extrinsic curvature on the brane. We establish the presence of geometric self-acceleration and a possible curvature domination wedged in between the period of matter and self-acceleration eras as signatures of codimension-2 cosmology.Comment: 21 pages, 5 figures, journal versio

    A new asymptotical flat and spherically symmetric solution in the generalized Einstein-Cartan-Kibble-Sciama gravity and gravitational lensing

    Full text link
    We firstly present a new asymptotical flat and spherically symmetric solution in the generalized Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity and then investigate the propagation of photon in this background. This solution possesses three independent parameters which affect sharply photon sphere, deflection angle of light ray and gravitational lensing. Since the condition of existence of horizons is not inconsistent with that of photon sphere, there exists a special case where there is horizon but no photon sphere in this spacetime. Especially, we find that in this special case, the deflection angle of a light ray near the event horizon tends to a finite value rather than diverges, which is not explored in other spacetimes. We also study the strong gravitational lensing in this spacetime with the photon sphere and then probe how the spacetime parameters affect the coefficients in the strong field limit.Comment: 22 pages, 7 figures. Some discussions are added. arXiv admin note: text overlap with arXiv:1712.0016
    • …
    corecore