83,219 research outputs found
Hill of Banchory Geothermal Energy Project Feasibility Study Report
This feasibility study explored the potential for a deep geothermal heat project at Hill of Banchory, Aberdeenshire. The geology of the Hill of Fare, to the north of Banchory, gives cause to believe it has good geothermal potential, while the Hill of Banchory heat network, situated on the northern side of the town, offers a ready-made heat customer.
The partners in the consortium consisted of academics and developers with relevant expertise in deep geothermal energy, heat networks, and financial analysis, together with representatives of local Government. They conducted geological fieldwork around the Hill of Fare, engaged with local residents to establish their attitudes to geothermal energy, and built business models to predict the conditions under which the heat network at Hill of Banchory would be commercial if it utilised heat from the proposed geothermal well. They also estimated the potential carbon emission reductions that could be achieved by using deep geothermal energy, both at Hill of Banchory and more widely
Geothermal Energy: Tapping the Energy in the Earth's Core
Key facts: - Geothermal energy comes from the heat in the Earth's core. This heat creates underground reservoirs of steam and hot water, which can be tapped to generate electricity or to heat and cool buildings directly. - Geothermal energy is the third largest source of renewable energy, behind hydropower and biomass. In 2003, it accounted for 7 percent of US electricity generated from renewable sources. - The United States is the world's largest producer of geothermal energy. About 2,800 megawatts (MW) of geothermal electrical capacity is connected to the electrical grid in the United States; 8,000 MW of geothermal electrical capacity is installed worldwide. - The US Geological Survey (USGS) has identified approximately 22,000 MW of geothermal resources sufficient for electrical power generation in the United States. In addition, low-temperature resources sufficient for direct-use and heat pumps are available across the country. - The largest geothermal development in the world is at The Geysers in California. This plant, in operation since 1960, has a capacity of over 850 MW and satisfies nearly 70 percent of the average electrical demand for the Californian North Coast region. - Electricity from The Geysers sells for 0.035 per kilowatt-hour (kWh), while electricity from newer geothermal plants costs between 0.08 per kWh. New geothermal power plants are now eligible for a Production Tax Credit for power produced in the first 5 years of operation
Parsimonious numerical modelling of deep geothermal reservoirs
Numerical modelling has been undertaken to help improve understanding of a deep geothermal system being considered for development in the vicinity of Eastgate (Weardale, County Durham, UK). A parsimonious numerical modelling approach is used, which allows the possibility to develop a workable formal framework, rigorously testing evolving concepts against data as they become available. The approach used and results presented in this study are valuable as a contribution to a wider understanding of deep geothermal systems. This modelling approach is novel in that it utilises the mass transport code MT3DMS as a surrogate representation for heat transport in mid-enthalpy geothermal systems. A three-dimensional heat transport model was built, based on a relatively simple conceptual model. Results of simulation runs of a geothermal production scenario have positive implications for a working geothermal system at Eastgate. The Eastgate Geothermal Field has significant exploitation potential for combined heat and power purposes; it is anticipated that this site could support several tens of megawatts of heat production for direct use and many megawatts of electrical power using a binary power plant
Heat buffers improve capacity and exploitation degree of geothermal energy sources
This research focuses on the role of heat buffers to support optimal use of combinations of traditional and renewable heat sources like geothermal heat for greenhouse heating. The objective was to determine the contribution of heat buffers to effective new combinations of resources that satisfy greenhouse heat, carbon dioxide and electricity demand at minimum cost. Tank buffers, basement buffers and aquifers were considered as short and long term buffers. Simulations were carried out for a 10ha sweet pepper and a 30ha tomato greenhouse (15ha intensively lighted). Standard heating systems based on central boiler and co-generation were used as a reference and compared with combinations of boilers, co-generators, geothermal heat and heat buffer strategies. Crop production and greenhouse climate were simulated and resource demand determined for normal greenhouse operation. A linear programming algorithm was used to apply resources and equipment available to the model at minimum cost. Results show that heat buffers help to reduce the required capacity of a geothermal heat source, and increase both the utilisation degree of the source and the cover percentage of greenhouse heat demand. The technically most feasible solution for long term buffering was the basement buffer which allows high buffer volumes without loss of useful space and heat loss contributes to greenhouse heating, however this solution was economically not feasible. Also the deep aquifer was a good option, however exploitation risks and manageability are potential problems. Integration of geothermal heat with other sources resulted in the best solutions that were both technically and economically feasible. Simulation showed at gas price level 30¿ct.m-3, that geothermal heat was cheaper than central boiler and even co-generation heat when hours of operation exceed 1000h.y-1. Instead of using large buffers, peak loads can also be covered by central boilers. Simulated solutions reduced gas consumption with 60 to 95%
Estimation of cement thermal properties through the three-phase model with application to geothermal wells
Geothermal energy has been used by mankind since ancient times. Given the limited geographical distribution of the most favorable resources, exploration efforts have more recently focused on unconventional geothermal systems targeting greater depths to reach sufficient temperatures. In these systems, geothermal well performance relies on efficient heat transfer between the working fluid, which is pumped from surface, and the underground rock. Most of the wells designed for such environments require that the casing strings used throughout the well construction process be cemented in place. The overall heat transfer around the wellbore may be optimized through accurate selection of cement recipes. This paper presents the application of a three-phase analytical model to estimate the cement thermal properties. The results show that cement recipes can be designed to enhance or minimize heat transfer around wellbore, extending the application of geothermal exploitation
Geothermal probabilistic cost study
A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined
Impact of geothermal heating on the global ocean circulation
The response of a global circulation model to a uniform geothermal heat flux of 50 mW m-2 through the sea floor is examined. If the geothermal heat input were transported upward purely by diffusion, the deep ocean would warm by 1.2°C. However, geothermal heating induces a substantial change in the deep circulation which is larger than previously assumed and subsequently the warming of the deep ocean is only a quarter of that suggested by the diffusive limit. The numerical ocean model responds most strongly in the Indo-Pacific with an increase in meridional overturning of 1.8 Sv, enhancing the existing overturning by approximately 25%
Geothermal electricity generation and desalination: an integrated process design to conserve latent heat with operational improvements
A new process combination is proposed to link geothermal electricity generation with desalination. The concept involves maximizing the utilization of harvested latent heat by passing the turbine exhaust steam into a multiple effect distillation system and then into an adsorption desalination system. Processes are fully integrated to produce electricity, desalted water for consumer consumption, and make-up water for the geothermal extraction system. Further improvements in operational efficiency are achieved by adding a seawater reverse osmosis system to the site to utilize some of the generated electricity and using on-site aquifer storage and recovery to maximize water production with tailoring of seasonal capacity requirements and to meet facility maintenance requirements. The concept proposed conserves geothermally harvested latent heat and maximizes the economics of geothermal energy development. Development of a fully renewable energy electric generation-desalination-aquifer storage campus is introduced within the framework of geothermal energy development
Overcoming challenges in the classification of deep geothermal potential
The geothermal community lacks a universal definition of deep geothermal systems. A minimum depth of 400 m is often assumed, with a further sub-classification into middle-deep geothermal systems for reservoirs found between 400 and 1000 m. Yet, the simplistic use of a depth cut-off is insufficient to uniquely determine the type of resource and its associated potential. Different definitions and criteria have been proposed in the past to frame deep geothermal systems. However, although they have valid assumptions, these frameworks lack systematic integration of correlated factors. To further complicate matters, new definitions such as hot dry rock (HDR), enhanced or engineered geothermal systems (EGSs) or deep heat mining have been introduced over the years. A clear and transparent approach is needed to estimate the potential of deep geothermal systems and be capable of distinguishing between resources of a different nature. In order to overcome the ambiguity associated with some past definitions such as EGS, this paper proposes the return to a more rigorous petrothermal versus hydrothermal classification. This would be superimposed with numerical criteria for the following: depth and temperature; predominance of conduction, convection or advection; formation type; rock properties; heat source type; requirement for formation stimulation and corresponding efficiency; requirement to provide the carrier fluid; well productivity (or injectivity); production (or circulation) flow rate; and heat recharge mode. Using the results from data mining of past and present deep geothermal projects worldwide, a classification of the same, according to the aforementioned criteria is proposed
The Colorado School of Mines Nevada geothermal study
Geothermal systems in the Basin and Range Province of the western United States probably differ in many respects from geothermal systems already discovered in other parts of the world because of the unique tectonic setting. To investigate this, a study of the geothermal occurrences at Fly Ranch, approximately 100 miles north of Reno, Nevada, has been undertaken. Ample evidence for a geothermal system exists in this area, including the surface expression of heat flow in the form of hot springs, an extensive area of low electrical resistivity, and a high level of seismicity along faults bounding the thermal area. However, geophysical and geological studies have not yet provided evidence for a local heat source at depth. Additional detailed geophysical and geological studies, as well as drilling, must be completed before the geothermal system can be described fully
- …