875 research outputs found

    Geometric Aspects of Holographic Bit Threads

    Get PDF
    We revisit the recent reformulation of the holographic prescription to compute entanglement entropy in terms of a convex optimization problem, introduced by Freedman and Headrick. According to it, the holographic entanglement entropy associated to a boundary region is given by the maximum flux of a bounded, divergenceless vector field, through the corresponding region. Our work leads to two main results: (i) We present a general algorithm that allows the construction of explicit thread configurations in cases where the minimal surface is known. We illustrate the method with simple examples: spheres and strips in vacuum AdS, and strips in a black brane geometry. Studying more generic bulk metrics, we uncover a sufficient set of conditions on the geometry and matter fields that must hold to be able to use our prescription. (ii) Based on the nesting property of holographic entanglement entropy, we develop a method to construct bit threads that maximize the flux through a given bulk region. As a byproduct, we are able to construct more general thread configurations by combining (i) and (ii) in multiple patches. We apply our methods to study bit threads which simultaneously compute the entanglement entropy and the entanglement of purification of mixed states and comment on their interpretation in terms of entanglement distillation. We also consider the case of disjoint regions for which we can explicitly construct the so-called multi-commodity flows and show that the monogamy property of mutual information can be easily illustrated from our constructions.Comment: 48 pages, multiple figures. v3: matches published versio

    Holographic Inequalities and Entanglement of Purification

    Full text link
    We study the conjectured holographic duality between entanglement of purification and the entanglement wedge cross-section. We generalize both quantities and prove several information theoretic inequalities involving them. These include upper bounds on conditional mutual information and tripartite information, as well as a lower bound for tripartite information. These inequalities are proven both holographically and for general quantum states. In addition, we use the cyclic entropy inequalities to derive a new holographic inequality for the entanglement wedge cross-section, and provide numerical evidence that the corresponding inequality for the entanglement of purification may be true in general. Finally, we use intuition from bit threads to extend the conjecture to holographic duals of suboptimal purifications.Comment: 17 pages, 4 figures, 1 table. v2: added clarification and fixed typ

    Entanglement Wedge Cross Sections Require Tripartite Entanglement

    Full text link
    We argue that holographic CFT states require a large amount of tripartite entanglement, in contrast to the conjecture that their entanglement is mostly bipartite. Our evidence is that this mostly-bipartite conjecture is in sharp conflict with two well-supported conjectures about the entanglement wedge cross section surface EWE_W. If EWE_W is related to either the CFT's reflected entropy or its entanglement of purification, then those quantities can differ from the mutual information at O(1GN)\mathcal{O}(\frac{1}{G_N}). We prove that this implies holographic CFT states must have O(1GN)\mathcal{O}(\frac{1}{G_N}) amounts of tripartite entanglement. This proof involves a new Fannes-type inequality for the reflected entropy, which itself has many interesting applications.Comment: 20 pages, 5 figures, comments added in v
    • …
    corecore