314,200 research outputs found
Evolution of Biological Complexity
In order to make a case for or against a trend in the evolution of complexity
in biological evolution, complexity needs to be both rigorously defined and
measurable. A recent information-theoretic (but intuitively evident) definition
identifies genomic complexity with the amount of information a sequence stores
about its environment. We investigate the evolution of genomic complexity in
populations of digital organisms and monitor in detail the evolutionary
transitions that increase complexity. We show that because natural selection
forces genomes to behave as a natural ``Maxwell Demon'', within a fixed
environment genomic complexity is forced to increase.Comment: LaTeX 19 pages, incl. 4 fig
Simultaneous evolutionary expansion and constraint of genomic heterogeneity in multifocal lung cancer.
Recent genomic analyses have revealed substantial tumor heterogeneity across various cancers. However, it remains unclear whether and how genomic heterogeneity is constrained during tumor evolution. Here, we sequence a unique cohort of multiple synchronous lung cancers (MSLCs) to determine the relative diversity and uniformity of genetic drivers upon identical germline and environmental background. We find that each multicentric primary tumor harbors distinct oncogenic alterations, including novel mutations that are experimentally demonstrated to be functional and therapeutically targetable. However, functional studies show a strikingly constrained tumorigenic pathway underlying heterogeneous genetic variants. These results suggest that although the mutation-specific routes that cells take during oncogenesis are stochastic, genetic trajectories may be constrained by selection for functional convergence on key signaling pathways. Our findings highlight the robust evolutionary pressures that simultaneously shape the expansion and constraint of genomic diversity, a principle that holds important implications for understanding tumor evolution and optimizing therapeutic strategies.Across cancer types tumor heterogeneity has been observed, but how this relates to tumor evolution is unclear. Here, the authors sequence multiple synchronous lung cancers, highlighting the evolutionary pressures that simultaneously shape the expansion and constraint of genomic heterogeneity
The modern versus extended evolutionary synthesis : sketch of an intra-genomic gene's eye view for the evolutionary-genetic underpinning of epigenetic and developmental evolution
Studying the phenotypic evolution of organisms in terms of populations of genes and genotypes,
the Modern Synthesis (MS) conceptualizes biological evolution in terms of 'inter-organismal'
interactions among genes sitting in the different individual organisms that constitute a population.
It 'black-boxes' the complex 'intra-organismic' molecular and developmental epigenetics mediating
between genotypes and phenotypes. To conceptually integrate epigenetics and evo-devo into
evolutionary theory, advocates of an Extended Evolutionary Synthesis (EES) argue that the MS's
reductive gene-centrism should be abandoned in favor of a more inclusive organism-centered approach.
To push the debate to a new level of understanding, we introduce the evolutionary biology
of 'intra-genomic conflict' (IGC) to the controversy. This strategy is based on a twofold rationale.
First, the field of IGC is both ‘gene-centered’ and 'intra-organismic' and, as such, could build a
bridge between the gene-centered MS and the intra-organismic fields of epigenetics and evo-devo.
And second, it is increasingly revealed that IGC plays a significant causal role in epigenetic and
developmental evolution and even in speciation. Hence, to deal with the ‘discrepancy’ between
the ‘gene-centered’ MS and the ‘intra-organismic’ fields of epigenetics and evo-devo, we sketch
a conceptual solution in terms of ‘intra-genomic conflict and compromise’ – an ‘intra-genomic
gene’s eye view’ that thinks in terms of intra-genomic ‘evolutionarily stable strategies’ (ESSs)
among numerous and various DNA regions and elements – to evolutionary-genetically underwrite
both epigenetic and developmental evolution, as such questioning the ‘gene-de-centered’
stance put forward by EES-advocates
A conditional compression distance that unveils insights of the genomic evolution
We describe a compression-based distance for genomic sequences. Instead of
using the usual conjoint information content, as in the classical Normalized
Compression Distance (NCD), it uses the conditional information content. To
compute this Normalized Conditional Compression Distance (NCCD), we need a
normal conditional compressor, that we built using a mixture of static and
dynamic finite-context models. Using this approach, we measured chromosomal
distances between Hominidae primates and also between Muroidea (rat and mouse),
observing several insights of evolution that so far have not been reported in
the literature.Comment: Full version of DCC 2014 paper "A conditional compression distance
that unveils insights of the genomic evolution
The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata
Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata. This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors
Stability domains of actin genes and genomic evolution
In eukaryotic genes the protein coding sequence is split into several
fragments, the exons, separated by non-coding DNA stretches, the introns.
Prokaryotes do not have introns in their genome. We report the calculations of
stability domains of actin genes for various organisms in the animal, plant and
fungi kingdoms. Actin genes have been chosen because they have been highly
conserved during evolution. In these genes all introns were removed so as to
mimic ancient genes at the time of the early eukaryotic development, i.e.
before introns insertion. Common stability boundaries are found in evolutionary
distant organisms, which implies that these boundaries date from the early
origin of eukaryotes. In general boundaries correspond with introns positions
of vertebrates and other animals actins, but not much for plants and fungi. The
sharpest boundary is found in a locus where fungi, algae and animals have
introns in positions separated by one nucleotide only, which identifies a
hot-spot for insertion. These results suggest that some introns may have been
incorporated into the genomes through a thermodynamic driven mechanism, in
agreement with previous observations on human genes. They also suggest a
different mechanism for introns insertion in plants and animals.Comment: 9 Pages, 7 figures. Phys. Rev. E in pres
A Solvable Sequence Evolution Model and Genomic Correlations
We study a minimal model for genome evolution whose elementary processes are
single site mutation, duplication and deletion of sequence regions and
insertion of random segments. These processes are found to generate long-range
correlations in the composition of letters as long as the sequence length is
growing, i.e., the combined rates of duplications and insertions are higher
than the deletion rate. For constant sequence length, on the other hand, all
initial correlations decay exponentially. These results are obtained
analytically and by simulations. They are compared with the long-range
correlations observed in genomic DNA, and the implications for genome evolution
are discussed.Comment: 4 pages, 4 figure
Reconsidering the significance of genomic word frequency
We propose that the distribution of DNA words in genomic sequences can be
primarily characterized by a double Pareto-lognormal distribution, which
explains lognormal and power-law features found across all known genomes. Such
a distribution may be the result of completely random sequence evolution by
duplication processes. The parametrization of genomic word frequencies allows
for an assessment of significance for frequent or rare sequence motifs
Development of ListeriaBase and comparative analysis of Listeria monocytogenes
Background: Listeria consists of both pathogenic and non-pathogenic species. Reports of similarities between the genomic content between some pathogenic and non-pathogenic species necessitates the investigation of these species at the genomic level to understand the evolution of virulence-associated genes. With Listeria genome data growing exponentially, comparative genomic analysis may give better insights into evolution, genetics and phylogeny of Listeria spp., leading to better management of the diseases caused by them.
Description: With this motivation, we have developed ListeriaBase, a web Listeria genomic resource and analysis platform to facilitate comparative analysis of Listeria spp. ListeriaBase currently houses 850,402 protein-coding genes, 18,113 RNAs and 15,576 tRNAs from 285 genome sequences of different Listeria strains. An AJAX-based real time search system implemented in ListeriaBase facilitates searching of this huge genomic data. Our in-house designed comparative analysis tools such as Pairwise Genome Comparison (PGC) tool allowing comparison between two genomes, Pathogenomics Profiling Tool (PathoProT) for comparing the virulence genes, and ListeriaTree for phylogenic classification, were customized and incorporated in ListeriaBase facilitating comparative genomic analysis of Listeria spp. Interestingly, we identified a unique genomic feature in the L. monocytogenes genomes in our analysis. The Auto protein sequences of the serotype 4 and the non-serotype 4 strains of L. monocytogenes possessed unique sequence signatures that can differentiate the two groups. We propose that the aut gene may be a potential gene marker for differentiating the serotype 4 strains from other serotypes of L. monocytogenes.
Conclusions: ListeriaBase is a useful resource and analysis platform that can facilitate comparative analysis of Listeria for the scientific communities. We have successfully demonstrated some key utilities of ListeriaBase. The knowledge that we obtained in the analyses of L. monocytogenes may be important for functional works of this human pathogen in future. ListeriaBase is currently available at http://listeria.um.edu.my
- …