350,211 research outputs found
Alterations to nuclear architecture and genome behavior in senescent cells.
The organization of the genome within interphase nuclei, and how it interacts with nuclear structures is important for the regulation of nuclear functions. Many of the studies researching the importance of genome organization and nuclear structure are performed in young, proliferating, and often transformed cells. These studies do not reveal anything about the nucleus or genome in nonproliferating cells, which may be relevant for the regulation of both proliferation and replicative senescence. Here, we provide an overview of what is known about the genome and nuclear structure in senescent cells. We review the evidence that nuclear structures, such as the nuclear lamina, nucleoli, the nuclear matrix, nuclear bodies (such as promyelocytic leukemia bodies), and nuclear morphology all become altered within growth-arrested or senescent cells. Specific alterations to the genome in senescent cells, as compared to young proliferating cells, are described, including aneuploidy, chromatin modifications, chromosome positioning, relocation of heterochromatin, and changes to telomeres
A biophysical approach to large-scale protein-DNA binding data
About this book * Cutting-edge genome analysis methods from leading bioinformaticians An accurate description of current scientific developments in the field of bioinformatics and computational implementation is presented by research of the BioSapiens Network of Excellence. Bioinformatics is essential for annotating the structure and function of genes, proteins and the analysis of complete genomes and to molecular biology and biochemistry. Included is an overview of bioinformatics, the full spectrum of genome annotation approaches including; genome analysis and gene prediction, gene regulation analysis and expression, genome variation and QTL analysis, large scale protein annotation of function and structure, annotation and prediction of protein interactions, and the organization and annotation of molecular networks and biochemical pathways. Also covered is a technical framework to organize and represent genome data using the DAS technology and work in the annotation of two large genomic sets: HIV/HCV viral genomes and splicing alternatives potentially encoded in 1% of the human genome
Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes.
DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival
Crosstalk between chromatin structure, cohesin activity and transcription
Background: A complex interplay between chromatin and topological machineries is critical for genome architecâ ture and function. However, little is known about these reciprocal interactions, even for cohesin, despite its multiple roles in DNA metabolism. Results: We have used genomeâwide analyses to address how cohesins and chromatin structure impact each other in yeast. Cohesin inactivation in scc1â73 mutants during the S and G2 phases causes specific changes in chromatin structure that preferentially take place at promoters; these changes include a significant increase in the occupancy of the â 1 and + 1 nucleosomes. In addition, cohesins play a major role in transcription regulation that is associated with specific promoter chromatin architecture. In scc1â73 cells, downregulated genes are enriched in promoters with short or no nucleosomeâfree region (NFR) and a fragile ânucleosome â 1/RSC complexâ particle. These results, together with a preferential increase in the occupancy of nucleosome â 1 of these genes, suggest that cohesins promote transcription activation by helping RSC to form the NFR. In sharp contrast, the scc1â73 upregulated genes are enriched in promoters with an âopenâ chromatin structure and are mostly at cohesinâenriched regions, suggesting that a local accumulation of cohesins might help to inhibit transcription. On the other hand, a dramatic loss of chromatin integrity by histone depletion during DNA replication has a moderate effect on the accumulation and distribution of cohesin peaks along the genome. Conclusions: Our analyses of the interplay between chromatin integrity and cohesin activity suggest that cohesins play a major role in transcription regulation, which is associated with specific chromatin architecture and cohesinâ mediated nucleosome alterations of the regulated promoters. In contrast, chromatin integrity plays only a minor role in the binding and distribution of cohesins.Spanish Ministry of Economy and Competitivenes BFU2012-38171, BFU2015-63698-PAndalusian Government P12-CTS-227
Gene clusters reflecting macrodomain structure respond to nucleoid perturbations
Focusing on the DNA-bridging nucleoid proteins Fis and H-NS, and integrating
several independent experimental and bioinformatic data sources, we investigate
the links between chromosomal spatial organization and global transcriptional
regulation. By means of a novel multi-scale spatial aggregation analysis, we
uncover the existence of contiguous clusters of nucleoid-perturbation sensitive
genes along the genome, whose expression is affected by a combination of
topological DNA state and nucleoid-shaping protein occupancy. The clusters
correlate well with the macrodomain structure of the genome. The most
significant of them lay symmetrically at the edges of the ter macrodomain and
involve all of the flagellar and chemotaxis machinery, in addition to key
regulators of biofilm formation, suggesting that the regulation of the physical
state of the chromosome by the nucleoid proteins plays an important role in
coordinating the transcriptional response leading to the switch between a
motile and a biofilm lifestyle.Comment: Article: first 24 pages, 3 figures Supplementary methods: 1 page, 1
figure Supplementary results: 14 pages, 11 figure
Histone H4K20 methylation mediated chromatin compaction threshold ensures genome integrity by limiting DNA replication licensing
Cell cycle and replication need to be tightly regulated to ensure genome stability in mammalian cells. Here the authors provide a link between chromatin structure and DNA replication regulation by showing that chromatin compaction limits replication licensing thereby promoting genome integrity
Genome structure and transcriptional regulation of human coronavirus NL63
BACKGROUND: Two human coronaviruses are known since the 1960s: HCoV-229E and HCoV-OC43. SARS-CoV was discovered in the early spring of 2003, followed by the identification of HCoV-NL63, the fourth member of the coronaviridae family that infects humans. In this study, we describe the genome structure and the transcription strategy of HCoV-NL63 by experimental analysis of the viral subgenomic mRNAs. RESULTS: The genome of HCoV-NL63 has the following gene order: 1a-1b-S-ORF3-E-M-N. The GC content of the HCoV-NL63 genome is extremely low (34%) compared to other coronaviruses, and we therefore performed additional analysis of the nucleotide composition. Overall, the RNA genome is very low in C and high in U, and this is also reflected in the codon usage. Inspection of the nucleotide composition along the genome indicates that the C-count increases significantly in the last one-third of the genome at the expense of U and G. We document the production of subgenomic (sg) mRNAs coding for the S, ORF3, E, M and N proteins. We did not detect any additional sg mRNA. Furthermore, we sequenced the 5' end of all sg mRNAs, confirming the presence of an identical leader sequence in each sg mRNA. Northern blot analysis indicated that the expression level among the sg mRNAs differs significantly, with the sg mRNA encoding nucleocapsid (N) being the most abundant. CONCLUSIONS: The presented data give insight into the viral evolution and mutational patterns in coronaviral genome. Furthermore our data show that HCoV-NL63 employs the discontinuous replication strategy with generation of subgenomic mRNAs during the (-) strand synthesis. Because HCoV-NL63 has a low pathogenicity and is able to grow easily in cell culture, this virus can be a powerful tool to study SARS coronavirus pathogenesis
Quantitative nucleotide level analysis of regulation of translation in response to depolarization of cultured neural cells
Studies on regulation of gene expression have contributed substantially to understanding mechanisms for the long-term activity-dependent alterations in neural connectivity that are thought to mediate learning and memory. Most of these studies, however, have focused on the regulation of mRNA transcription. Here, we utilized high-throughput sequencing coupled with ribosome footprinting to globally characterize the regulation of translation in primary mixed neuronal-glial cultures in response to sustained depolarization. We identified substantial and complex regulation of translation, with many transcripts demonstrating changes in ribosomal occupancy independent of transcriptional changes. We also examined sequence-based mechanisms that might regulate changes in translation in response to depolarization. We found that these are partially mediated by features in the mRNA sequenceânotably upstream open reading frames and secondary structure in the 5âČ untranslated regionâboth of which predict downregulation in response to depolarization. Translationally regulated transcripts are also more likely to be targets of FMRP and include genes implicated in autism in humans. Our findings support the idea that control of mRNA translation plays an important role in response to neural activity across the genome
Comprehensive analysis of the chromatin landscape in Drosophila melanogaster.
Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function
- âŠ