57,700 research outputs found
Adversarial Variational Optimization of Non-Differentiable Simulators
Complex computer simulators are increasingly used across fields of science as
generative models tying parameters of an underlying theory to experimental
observations. Inference in this setup is often difficult, as simulators rarely
admit a tractable density or likelihood function. We introduce Adversarial
Variational Optimization (AVO), a likelihood-free inference algorithm for
fitting a non-differentiable generative model incorporating ideas from
generative adversarial networks, variational optimization and empirical Bayes.
We adapt the training procedure of generative adversarial networks by replacing
the differentiable generative network with a domain-specific simulator. We
solve the resulting non-differentiable minimax problem by minimizing
variational upper bounds of the two adversarial objectives. Effectively, the
procedure results in learning a proposal distribution over simulator
parameters, such that the JS divergence between the marginal distribution of
the synthetic data and the empirical distribution of observed data is
minimized. We evaluate and compare the method with simulators producing both
discrete and continuous data.Comment: v4: Final version published at AISTATS 2019; v5: Fixed typo in Eqn 1
Steganographic Generative Adversarial Networks
Steganography is collection of methods to hide secret information ("payload")
within non-secret information "container"). Its counterpart, Steganalysis, is
the practice of determining if a message contains a hidden payload, and
recovering it if possible. Presence of hidden payloads is typically detected by
a binary classifier. In the present study, we propose a new model for
generating image-like containers based on Deep Convolutional Generative
Adversarial Networks (DCGAN). This approach allows to generate more
setganalysis-secure message embedding using standard steganography algorithms.
Experiment results demonstrate that the new model successfully deceives the
steganography analyzer, and for this reason, can be used in steganographic
applications.Comment: 15 pages, 10 figures, 5 tables, Workshop on Adversarial Training
(NIPS 2016, Barcelona, Spain
Generative Adversarial Mapping Networks
Generative Adversarial Networks (GANs) have shown impressive performance in
generating photo-realistic images. They fit generative models by minimizing
certain distance measure between the real image distribution and the generated
data distribution. Several distance measures have been used, such as
Jensen-Shannon divergence, -divergence, and Wasserstein distance, and
choosing an appropriate distance measure is very important for training the
generative network. In this paper, we choose to use the maximum mean
discrepancy (MMD) as the distance metric, which has several nice theoretical
guarantees. In fact, generative moment matching network (GMMN) (Li, Swersky,
and Zemel 2015) is such a generative model which contains only one generator
network trained by directly minimizing MMD between the real and generated
distributions. However, it fails to generate meaningful samples on challenging
benchmark datasets, such as CIFAR-10 and LSUN. To improve on GMMN, we propose
to add an extra network , called mapper. maps both real data
distribution and generated data distribution from the original data space to a
feature representation space , and it is trained to maximize MMD
between the two mapped distributions in , while the generator
tries to minimize the MMD. We call the new model generative adversarial mapping
networks (GAMNs). We demonstrate that the adversarial mapper can help
to better capture the underlying data distribution. We also show that GAMN
significantly outperforms GMMN, and is also superior to or comparable with
other state-of-the-art GAN based methods on MNIST, CIFAR-10 and LSUN-Bedrooms
datasets.Comment: 9 pages, 7 figure
- …