13,022 research outputs found

    All multipartite Bell correlation inequalities for two dichotomic observables per site

    Get PDF
    We construct a set of 2^(2^n) independent Bell correlation inequalities for n-partite systems with two dichotomic observables each, which is complete in the sense that the inequalities are satisfied if and only if the correlations considered allow a local classical model. All these inequalities can be summarized in a single, albeit non-linear inequality. We show that quantum correlations satisfy this condition provided the state has positive partial transpose with respect to any grouping of the n systems into two subsystems. We also provide an efficient algorithm for finding the maximal quantum mechanical violation of each inequality, and show that the maximum is always attained for the generalized GHZ state.Comment: 11 pages, REVTe

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives

    Get PDF
    A well-studied nonlinear extension of the minimum-cost flow problem is to minimize the objective ijECij(fij)\sum_{ij\in E} C_{ij}(f_{ij}) over feasible flows ff, where on every arc ijij of the network, CijC_{ij} is a convex function. We give a strongly polynomial algorithm for the case when all CijC_{ij}'s are convex quadratic functions, settling an open problem raised e.g. by Hochbaum [1994]. We also give strongly polynomial algorithms for computing market equilibria in Fisher markets with linear utilities and with spending constraint utilities, that can be formulated in this framework (see Shmyrev [2009], Devanur et al. [2011]). For the latter class this resolves an open question raised by Vazirani [2010]. The running time is O(m4logm)O(m^4\log m) for quadratic costs, O(n4+n2(m+nlogn)logn)O(n^4+n^2(m+n\log n)\log n) for Fisher's markets with linear utilities and O(mn3+m2(m+nlogn)logm)O(mn^3 +m^2(m+n\log n)\log m) for spending constraint utilities. All these algorithms are presented in a common framework that addresses the general problem setting. Whereas it is impossible to give a strongly polynomial algorithm for the general problem even in an approximate sense (see Hochbaum [1994]), we show that assuming the existence of certain black-box oracles, one can give an algorithm using a strongly polynomial number of arithmetic operations and oracle calls only. The particular algorithms can be derived by implementing these oracles in the respective settings
    corecore