13,022 research outputs found
All multipartite Bell correlation inequalities for two dichotomic observables per site
We construct a set of 2^(2^n) independent Bell correlation inequalities for
n-partite systems with two dichotomic observables each, which is complete in
the sense that the inequalities are satisfied if and only if the correlations
considered allow a local classical model. All these inequalities can be
summarized in a single, albeit non-linear inequality. We show that quantum
correlations satisfy this condition provided the state has positive partial
transpose with respect to any grouping of the n systems into two subsystems. We
also provide an efficient algorithm for finding the maximal quantum mechanical
violation of each inequality, and show that the maximum is always attained for
the generalized GHZ state.Comment: 11 pages, REVTe
Three Puzzles on Mathematics, Computation, and Games
In this lecture I will talk about three mathematical puzzles involving
mathematics and computation that have preoccupied me over the years. The first
puzzle is to understand the amazing success of the simplex algorithm for linear
programming. The second puzzle is about errors made when votes are counted
during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure
Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives
A well-studied nonlinear extension of the minimum-cost flow problem is to
minimize the objective over feasible flows ,
where on every arc of the network, is a convex function. We give
a strongly polynomial algorithm for the case when all 's are convex
quadratic functions, settling an open problem raised e.g. by Hochbaum [1994].
We also give strongly polynomial algorithms for computing market equilibria in
Fisher markets with linear utilities and with spending constraint utilities,
that can be formulated in this framework (see Shmyrev [2009], Devanur et al.
[2011]). For the latter class this resolves an open question raised by Vazirani
[2010]. The running time is for quadratic costs,
for Fisher's markets with linear utilities and
for spending constraint utilities.
All these algorithms are presented in a common framework that addresses the
general problem setting. Whereas it is impossible to give a strongly polynomial
algorithm for the general problem even in an approximate sense (see Hochbaum
[1994]), we show that assuming the existence of certain black-box oracles, one
can give an algorithm using a strongly polynomial number of arithmetic
operations and oracle calls only. The particular algorithms can be derived by
implementing these oracles in the respective settings
- …