1,405,476 research outputs found

    Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer

    Get PDF
    Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a whole L-tryptophan biosynthetic operon, whereas in certain closely related actinobacteria, for example, Mycobacterium, the trpF gene is missing. In Mycobacterium, the function of the trpF gene is performed by a dual-substrate (βα)8 phosphoribosyl isomerase (priA gene) also involved in L-histidine (hisA gene) biosynthesis. We investigated the effect of a HGT-acquired TrpF enzyme upon PriA’s substrate specificity in Corynebacterium through comparative genomics and phylogenetic reconstructions. After comprehensive in vivo and enzyme kinetic analyses of selected PriA homologs, a novel (βα)8 isomerase subfamily with a specialized function in L-histidine biosynthesis, termed subHisA, was confirmed. X-ray crystallography was used to reveal active-site mutations in subHisA important for narrowing of substrate specificity, which when mutated to the naturally occurring amino acid in PriA led to gain of function. Moreover, in silico molecular dynamic analyses demonstrated that the narrowing of substrate specificity of subHisA is concomitant with loss of ancestral protein conformational states. Our results show the importance of HGT in shaping enzyme evolution and metabolism

    Genes in the postgenomic era

    Get PDF
    We outline three very different concepts of the gene - 'instrumental', 'nominal', and 'postgenomic'. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide range of fields grounded in well-defined sequences of nucleotides, but this concept does not embody major theoretical insights into genome structure or function. The post-genomic gene embodies the continuing project of understanding how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. This final concept of the gene poses a significant challenge to conventional assumptions about the relationship between genome structure and function, and between genotype and phenotype

    Virus-induced gene silencing database for phenomics and functional genomics in Nicotiana benthamiana

    Get PDF
    Virus-induced gene silencing (VIGS) is an important forward and reverse genetics method for the study of gene function in many plant species, especially Nicotiana benthamiana. However, despite the widespread use of VIGS, a searchable database compiling the phenotypes observed with this method is lacking. Such a database would allow researchers to know the phenotype associated with the silencing of a large number of individual genes without experimentation. We have developed a VIGS phenomics and functional genomics database (VPGD) that has DNA sequence information derived from over 4,000 N. benthamiana VIGS clones along with the associated silencing phenotype for approximately 1,300 genes. The VPGD has a built-in BLAST search feature that provides silencing phenotype information of specific genes. In addition, a keyword-based search function could be used to find a specific phenotype of interest with the corresponding gene, including its Gene Ontology descriptions. Query gene sequences from other plant species that have not been used for VIGS can also be searched for their homologs and silencing phenotype in N. benthamiana. VPGD is useful for identifying gene function not only in N. benthamiana but also in related Solanaceae plants such as tomato and potato. The database is accessible at http://vigs.noble.org.Noble Research Institute and NSF IOS-102564
    • …
    corecore