286 research outputs found

    The Quasi-Passive Quadruped Robot walking: PASIQUAD

    Get PDF
    The design of the four legged walking robot "PASIQUAD" is presented in this article. It was designed in the university Carlos III of Madrid. It is a quadruped quasi-passive robot (with only one motor/actuator). The manuscript is focused on how the PASIQUAD walks and the kinematics and dynamics of the movement. In the manuscript the position, velocity and acceleration of each of its parts, as well as all the forces and torques on each of them, motor torque included, will be explain. The PASIQUAD robot copy the movement of animals and it is almost passive. That is a big advantage in energy cost

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    A literature review on the optimization of legged robots

    Get PDF
    Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes

    Hybrid disturbance rejection control of dynamic bipedal robots

    Get PDF
    This paper presents a disturbance rejection control strategy for hybrid dynamic systems exposed to model uncertainties and external disturbances. The focus of this work is the gait control of dynamic bipedal robots. The proposed control strategy integrates continuous and discrete control actions. The continuous control action uses a novel model-based active disturbance rejection control (ADRC) approach to track gait trajectory references. The discrete control action resets the gait trajectory references after the impact produced by the robot’s support-leg exchange to maintain a zero tracking error. A Poincaré return map is used to search asymptotic stable periodic orbits in an extended hybrid zero dynamics (EHZD). The EHZD reflects a lower-dimensional representation of the full hybrid dynamics with uncertainties and disturbances. A physical bipedal robot testbed, referred to as Saurian, is fabricated for validation purposes. Numerical simulation and physical experiments show the robustness of the proposed control strategy against external disturbances and model uncertainties that affect both the swing motion phase and the support-leg exchange

    Designing an algorithm for bioloid humanoid navigating in its indoor environment

    Get PDF
    Gait analyses are the preliminary requirements to establish a navigation system of a humanoid robot. Designing a suitable indoor environment and its mapping are also important for the android localization, selection of a goal to achieve it and to perform the assigned tasks in its surroundings. This paper delineates the various gaits like walking, turning, obstacle overcoming and step up-down stairs for a humanoid system. The writing also explicates the design of the indoor test environment with the stationary obstacles placed on the navigation routes. The development of an efficient algorithm is also excogitated based on the various analyses of gaits and the predefined map of the test environment. As the navigation map is predetermined, the designed algorithm animates the humanoid to navigate by selecting an optimal route, depending on some external commands, to reach at the goal position. Finally the performance of the system is analysed based on the elapsed time of the navigation action with the validation of optimal navigation strategy where the designed algorithm demonstrates the robustness of its implementation and execution

    Developing Design and Analysis Framework for Hybrid Mechanical-Digital Control of Soft Robots: from Mechanics-Based Motion Sequencing to Physical Reservoir Computing

    Get PDF
    The recent advances in the field of soft robotics have made autonomous soft robots working in unstructured dynamic environments a close reality. These soft robots can potentially collaborate with humans without causing any harm, they can handle fragile objects safely, perform delicate surgeries inside body, etc. In our research we focus on origami based compliant mechanisms, that can be used as soft robotic skeleton. Origami mechanisms are inherently compliant, lightweight, compact, and possess unique mechanical properties such as– multi-stability, nonlinear dynamics, etc. Researchers have shown that multi-stable mechanisms have applications in motion-sequencing applications. Additionally, the nonlinear dynamic properties of origami and other soft, compliant mechanisms are shown to be useful for ‘morphological computation’ in which the body of the robot itself takes part in performing complex computations required for its control. In our research we demonstrate the motion-sequencing capability of multi-stable mechanisms through the example of bistable Kresling origami robot that is capable of peristaltic locomotion. Through careful theoretical analysis and thorough experiments, we show that we can harness multistability embedded in the origami robotic skeleton for generating actuation cycle of a peristaltic-like locomotion gait. The salient feature of this compliant robot is that we need only a single linear actuator to control the total length of the robot, and the snap-through actions generated during this motion autonomously change the individual segment lengths that lead to earthworm-like peristaltic locomotion gait. In effect, the motion-sequencing is hard-coded or embedded in the origami robot skeleton. This approach is expected to reduce the control requirement drastically as the robotic skeleton itself takes part in performing low-level control tasks. The soft robots that work in dynamic environments should be able to sense their surrounding and adapt their behavior autonomously to perform given tasks successfully. Thus, hard-coding a certain behavior as in motion-sequencing is not a viable option anymore. This led us to explore Physical Reservoir Computing (PRC), a computational framework that uses a physical body with nonlinear properties as a ‘dynamic reservoir’ for performing complex computations. The compliant robot ‘trained’ using this framework should be able to sense its surroundings and respond to them autonomously via an extensive network of sensor-actuator network embedded in robotic skeleton. We show for the first time through extensive numerical analysis that origami mechanisms can work as physical reservoirs. We also successfully demonstrate the emulation task using a Miura-ori based reservoir. The results of this work will pave the way for intelligently designed origami-based robots with embodied intelligence. These next generation of soft robots will be able to coordinate and modulate their activities autonomously such as switching locomotion gait and resisting external disturbances while navigating through unstructured environments

    Robust compound control of dynamic bipedal robots

    Get PDF
    This paper presents a robust compound control strategy to produce a stable gait in dynamic bipedal robots under random perturbations. The proposed control strategy consists of two interactive loops: an adaptive trajectory generator and a robust trajectory tracking controller. The adaptive trajectory generator produces references for the robot controlled joints without a-priori knowledge of the terrain features and minimizes the effects of disturbances and model uncertainties during the gait, particularly during the support-leg exchange. The trajectory tracking controller is a non-switching robust multivariable generalized proportional integral (GPI) controller. The GPI controller rejects external disturbances and uncertainties faced by the robot during the swing walking phase. The proposed control strategy was evaluated on the numerical model of a five-link planar bipedal robot with one degree of under-actuation, four actuators, and point feet. The results showed robust performance and stability under external disturbances and model parameter uncertainties on uneven terrain with uphills and downhills. The stability of the gait was proven through the computation of a Poincaré return map for a hybrid zero dynamics with uncertainties (HZDU) model, which shows convergence to a bounded neighborhood of a nominal orbital periodic behavior
    corecore