120 research outputs found
Astrometric Image Centroid Displacements due to Gravitational Microlensing by the Ellis Wormhole
Continuing work initiated in an earlier publication (Abe, ApJ, 725 (2010)
787), we study the gravitational microlensing effects of the Ellis wormhole in
the weak-field limit. First, we find a suitable coordinate transformation, such
that the lens equation and analytic expressions of the lensed image positions
can become much simpler than the previous ones. Second, we prove that two
images always appear for the weak-field lens by the Ellis wormhole. By using
these analytic results, we discuss astrometric image centroid displacements due
to gravitational microlensing by the Ellis wormhole. The astrometric image
centroid trajectory by the Ellis wormhole is different from the standard one by
a spherical lensing object that is expressed by the Schwarzschild metric. The
anomalous shift of the image centroid by the Ellis wormhole lens is smaller
than that by the Schwarzschild lens, provided that the impact parameter and the
Einstein ring radius are the same. Therefore, the lensed image centroid by the
Ellis wormhole moves slower. Such a difference, though it is very small, will
be in principle applicable for detecting or constraining the Ellis wormhole by
using future high-precision astrometry observations. In particular, the image
centroid position gives us an additional information, so that the parameter
degeneracy existing in photometric microlensing can be partially broken. The
anomalous shift reaches the order of a few micro arcsec. if our galaxy hosts a
wormhole with throat radius larger than km. When the source moves
tangentially to the Einstein ring for instance, the maximum position shift of
the image centroid by the Ellis wormhole is 0.18 normalized by the Einstein
ring radius. For the same source trajectory, the maximum difference between the
centroid displacement by the Ellis wormhole lens and that by the Schwarzschild
one is -0.16 in the units of the Einstein radius.Comment: 29 pages, 6 figures, 2 tables, accepted by Ap
Gravitational Microlensing by the Ellis Wormhole
A method to calculate light curves of the gravitational microlensing of the
Ellis wormhole is derived in the weak-field limit. In this limit, lensing by
the wormhole produces one image outside the Einstein ring and one other image
inside. The weak-field hypothesis is a good approximation in Galactic lensing
if the throat radius is less than . The light curves calculated
have gutters of approximately 4% immediately outside the Einstein ring crossing
times. The magnification of the Ellis wormhole lensing is generally less than
that of Schwarzschild lensing. The optical depths and event rates are
calculated for the Galactic bulge and Large Magellanic Cloud fields according
to bound and unbound hypotheses. If the wormholes have throat radii between 100
and , are bound to the galaxy, and have a number density that is
approximately that of ordinary stars, detection can be achieved by reanalyzing
past data. If the wormholes are unbound, detection using past data is
impossible.Comment: 27 pages, 4 figures, ApJ accepte
- …