24 research outputs found

    Associative pattern mining for supervised learning

    Get PDF
    The Internet era has revolutionized computational sciences and automated data collection techniques, made large amounts of previously inaccessible data available and, consequently, broadened the scope of exploratory computing research. As a result, data mining, which is still an emerging field of research, has gained importance because of its ability to analyze and discover previously unknown, hidden, and useful knowledge from these large amounts of data. One aspect of data mining, known as frequent pattern mining, has recently gained importance due to its ability to find associative relationships among the parts of data, thereby aiding a type of supervised learning known as associative learning . The purpose of this dissertation is two-fold: to develop and demonstrate supervised associative learning in non-temporal data for multi-class classification and to develop a new frequent pattern mining algorithm for time varying (temporal) data which alleviates the current issues in analyzing this data for knowledge discovery. In order to use associative relationships for classification, we have to algorithmically learn their discriminatory power. While it is well known that multiple sets of features work better for classification, we claim that the isomorphic relationships among the features work even better and, therefore, can be used as higher order features. To validate this claim, we exploit these relationships as input features for classification instead of using the underlying raw features. The next part of this dissertation focuses on building a new classifier using associative relationships as a basis for the multi-class classification problem. Most of the existing associative classifiers represent the instances from a class in a row-based format wherein one row represents features of one instance and extract association rules from the entire dataset. The rules formed in this way are known as class constrained rules, as they have class labels on the right side of the rules. We argue that this class constrained representation schema lacks important information that is necessary for multi-class classification. Further, most existing works use either the intraclass or inter-class importance of the association rules, both of which sets of techniques offer empirical benefits. We hypothesize that both intra-class and inter-class variations are important for fast and accurate multi-class classification. We also present a novel weighted association rule-based classification mechanism that uses frequent relationships among raw features from an instance as the basis for classifying the instance into one of the many classes. The relationships are weighted according to both their intra-class and inter-class importance. The final part of this dissertation concentrates on mining time varying data. This problem is known as inter-transaction association rule mining in the data-mining field. Most of the existing work transforms the time varying data into a static format and then use multiple scans over the new data to extract patterns. We present a unique index-based algorithmic framework for inter-transaction association rule mining. Our proposed technique requires only one scan of the original database. Further, the proposed technique can also provide the location information of each extracted pattern. We use mathematical induction to prove that the new representation scheme captures all underlying frequent relationships

    A Bottom-Up Review of Image Analysis Methods for Suspicious Region Detection in Mammograms.

    Get PDF
    Breast cancer is one of the most common death causes amongst women all over the world. Early detection of breast cancer plays a critical role in increasing the survival rate. Various imaging modalities, such as mammography, breast MRI, ultrasound and thermography, are used to detect breast cancer. Though there is a considerable success with mammography in biomedical imaging, detecting suspicious areas remains a challenge because, due to the manual examination and variations in shape, size, other mass morphological features, mammography accuracy changes with the density of the breast. Furthermore, going through the analysis of many mammograms per day can be a tedious task for radiologists and practitioners. One of the main objectives of biomedical imaging is to provide radiologists and practitioners with tools to help them identify all suspicious regions in a given image. Computer-aided mass detection in mammograms can serve as a second opinion tool to help radiologists avoid running into oversight errors. The scientific community has made much progress in this topic, and several approaches have been proposed along the way. Following a bottom-up narrative, this paper surveys different scientific methodologies and techniques to detect suspicious regions in mammograms spanning from methods based on low-level image features to the most recent novelties in AI-based approaches. Both theoretical and practical grounds are provided across the paper sections to highlight the pros and cons of different methodologies. The paper's main scope is to let readers embark on a journey through a fully comprehensive description of techniques, strategies and datasets on the topic

    Artificial neural network and its applications in quality process control, document recognition and biomedical imaging

    Get PDF
    In computer-vision based system a digital image obtained by a digital camera would usually have 24-bit color image. The analysis of an image with that many levels might require complicated image processing techniques and higher computational costs. But in real-time application, where a part has to be inspected within a few milliseconds, either we have to reduce the image to a more manageable number of gray levels, usually two levels (binary image), and at the same time retain all necessary features of the original image or develop a complicated technique. A binary image can be obtained by thresholding the original image into two levels. Therefore, thresholding of a given image into binary image is a necessary step for most image analysis and recognition techniques. In this thesis, we have studied the effectiveness of using artificial neural network (ANN) in pharmaceutical, document recognition and biomedical imaging applications for image thresholding and classification purposes. Finally, we have developed edge-based, ANN-based and region-growing based image thresholding techniques to extract low contrast objects of interest and classify them into respective classes in those applications. Real-time quality inspection of gelatin capsules in pharmaceutical applications is an important issue from the point of view of industry\u27s productivity and competitiveness. Computer vision-based automatic quality inspection and controller system is one of the solutions to this problem. Machine vision systems provide quality control and real-time feedback for industrial processes, overcoming physical limitations and subjective judgment of humans. In this thesis, we have developed an image processing system using edge-based image thresholding techniques for quality inspection that satisfy the industrial requirements in pharmaceutical applications to pass the accepted and rejected capsules. In document recognition application, success of OCR mostly depends on the quality of the thresholded image. Non-uniform illumination, low contrast and complex background make it challenging in this application. In this thesis, optimal parameters for ANN-based local thresholding approach for gray scale composite document image with non-uniform background is proposed. An exhaustive search was conducted to select the optimal features and found that pixel value, mean and entropy are the most significant features at window size 3x3 in this application. For other applications, it might be different, but the procedure to find the optimal parameters is same. The average recognition rate 99.25% shows that the proposed 3 features at window size 3x3 are optimal in terms of recognition rate and PSNR compare to the ANN-based thresholding technique with different parameters presented in the literature. In biomedical imaging application, breast cancer continues to be a public health problem. In this thesis we presented a computer aided diagnosis (CAD) system for mass detection and classification in digitized mammograms, which performs mass detection on regions of interest (ROI) followed by the benign-malignant classification on detected masses. Three layers ANN with seven features is proposed for classifying the marked regions into benign and malignant and 90.91% sensitivity and 83.87% specificity is achieved that is very much promising compare to the radiologist\u27s sensitivity 75%

    Rough Sets and Near Sets in Medical Imaging: A Review

    Full text link

    IMAGE UNDERSTANDING OF MOLAR PREGNANCY BASED ON ANOMALIES DETECTION

    Get PDF
    Cancer occurs when normal cells grow and multiply without normal control. As the cells multiply, they form an area of abnormal cells, known as a tumour. Many tumours exhibit abnormal chromosomal segregation at cell division. These anomalies play an important role in detecting molar pregnancy cancer. Molar pregnancy, also known as hydatidiform mole, can be categorised into partial (PHM) and complete (CHM) mole, persistent gestational trophoblastic and choriocarcinoma. Hydatidiform moles are most commonly found in women under the age of 17 or over the age of 35. Hydatidiform moles can be detected by morphological and histopathological examination. Even experienced pathologists cannot easily classify between complete and partial hydatidiform moles. However, the distinction between complete and partial hydatidiform moles is important in order to recommend the appropriate treatment method. Therefore, research into molar pregnancy image analysis and understanding is critical. The hypothesis of this research project is that an anomaly detection approach to analyse molar pregnancy images can improve image analysis and classification of normal PHM and CHM villi. The primary aim of this research project is to develop a novel method, based on anomaly detection, to identify and classify anomalous villi in molar pregnancy stained images. The novel method is developed to simulate expert pathologists’ approach in diagnosis of anomalous villi. The knowledge and heuristics elicited from two expert pathologists are combined with the morphological domain knowledge of molar pregnancy, to develop a heuristic multi-neural network architecture designed to classify the villi into their appropriated anomalous types. This study confirmed that a single feature cannot give enough discriminative power for villi classification. Whereas expert pathologists consider the size and shape before textural features, this thesis demonstrated that the textural feature has a higher discriminative power than size and shape. The first heuristic-based multi-neural network, which was based on 15 elicited features, achieved an improved average accuracy of 81.2%, compared to the traditional multi-layer perceptron (80.5%); however, the recall of CHM villi class was still low (64.3%). Two further textural features, which were elicited and added to the second heuristic-based multi-neural network, have improved the average accuracy from 81.2% to 86.1% and the recall of CHM villi class from 64.3% to 73.5%. The precision of the multi-neural network II has also increased from 82.7% to 89.5% for normal villi class, from 81.3% to 84.7% for PHM villi class and from 80.8% to 86% for CHM villi class. To support pathologists to visualise the results of the segmentation, a software tool, Hydatidiform Mole Analysis Tool (HYMAT), was developed compiling the morphological and pathological data for each villus analysis

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Detection of pathologies in retina digital images an empirical mode decomposition approach

    Get PDF
    Accurate automatic detection of pathologies in retina digital images offers a promising approach in clinicalapplications. This thesis employs the discrete wavelet transform (DWT) and empirical mode decomposition (EMD) to extract six statistical textural features from retina digital images. The statistical features are the mean, standard deviation, smoothness, third moment, uniformity, and entropy. The purpose is to classify normal and abnormal images. Five different pathologies are considered. They are Artery sheath (Coat’s disease), blot hemorrhage, retinal degeneration (circinates), age-related macular degeneration (drusens), and diabetic retinopathy (microaneurysms and exudates). Four classifiers are employed; including support vector machines (SVM), quadratic discriminant analysis (QDA), k-nearest neighbor algorithm (k-NN), and probabilistic neural networks (PNN). For each experiment, ten random folds are generated to perform cross-validation tests. In order to assess the performance of the classifiers, the average and standard deviation of the correct recognition rate, sensitivity and specificity are computed for each simulation. The experimental results highlight two main conclusions. First, they show the outstanding performance of EMD over DWT with all classifiers. Second, they demonstrate the superiority of the SVM classifier over QDA, k-NN, and PNN. Finally, principal component analysis (PCA) was employed to reduce the number of features in hope to improve the accuracy of classifiers. We find that there is no general and significant improvement of the performance, however. In sum, the EMD-SVM system provides a promising approach for the detection of pathologies in digital retina

    An image processing decisional system for the Achilles tendon using ultrasound images

    Get PDF
    The Achilles Tendon (AT) is described as the largest and strongest tendon in the human body. As for any other organs in the human body, the AT is associated with some medical problems that include Achilles rupture and Achilles tendonitis. AT rupture affects about 1 in 5,000 people worldwide. Additionally, AT is seen in about 10 percent of the patients involved in sports activities. Today, ultrasound imaging plays a crucial role in medical imaging technologies. It is portable, non-invasive, free of radiation risks, relatively inexpensive and capable of taking real-time images. There is a lack of research that looks into the early detection and diagnosis of AT abnormalities from ultrasound images. This motivated the researcher to build a complete system which enables one to crop, denoise, enhance, extract the important features and classify AT ultrasound images. The proposed application focuses on developing an automated system platform. Generally, systems for analysing ultrasound images involve four stages, pre-processing, segmentation, feature extraction and classification. To produce the best results for classifying the AT, SRAD, CLAHE, GLCM, GLRLM, KPCA algorithms have been used. This was followed by the use of different standard and ensemble classifiers trained and tested using the dataset samples and reduced features to categorize the AT images into normal or abnormal. Various classifiers have been adopted in this research to improve the classification accuracy. To build an image decisional system, a 57 AT ultrasound images has been collected. These images were used in three different approaches where the Region of Interest (ROI) position and size are located differently. To avoid the imbalanced misleading metrics, different evaluation metrics have been adapted to compare different classifiers and evaluate the whole classification accuracy. The classification outcomes are evaluated using different metrics in order to estimate the decisional system performance. A high accuracy of 83% was achieved during the classification process. Most of the ensemble classifies worked better than the standard classifiers in all the three ROI approaches. The research aim was achieved and accomplished by building an image processing decisional system for the AT ultrasound images. This system can distinguish between normal and abnormal AT ultrasound images. In this decisional system, AT images were improved and enhanced to achieve a high accuracy of classification without any user intervention
    corecore