2,804 research outputs found
The search for biomarkers of facial eczema, following a sporidesmin challenge in dairy cows, using mass spectrometry and nuclear magnetic resonance of serum, urine, and milk : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Sciences at Massey University, Palmerston North, Manawatu, New Zealand
Facial eczema (FE) is a secondary photosensitisation disease of ruminants that is significant in terms of both its economic importance to New Zealand and its impact on animal welfare. The clinical photosensitivity signs, caused by the retention of phytoporphyrin, occur secondarily to hepatobiliary damage caused by the mycotoxin sporidesmin.
Currently it is difficult to diagnose subclinical animals and those in the early stages of the disease. The project was aimed at applying new analytical and statistical techniques, to attempt the early diagnosis of FE in dairy cows following the administration of a single oral dose (0.24 mg/kg) of sporidesmin. Well-established traditional techniques including production parameters, liver enzyme (GGT, GDH) activity measurements, as well as measurements of phytoporphyrin by fluorescence spectroscopy were made for comparison.
Serum, urine, and milk were analysed using 1H Nuclear Magnetic Resonance (NMR), multivariate analysis (MVA), and time series statistics. Urine and milk did not prove useful for identification of sporidesmin intoxication. Serum metabolites differed between treated cows before and after administration of the toxin, and could distinguish samples belonging to the clinical group. The metabolites that were identified as being relevant to this classification were a mixture of glycoproteins, carboxylic acids, ketone bodies, amino-acids, glutamate, and glycerol, which were elevated for treated cattle, and acetate, choline, isoleucine, trimethylamine N-oxide, lipids, lipoproteins, cholesterol, and -glucose, which showed decreased concentrations. Citrate was found to be at higher concentration in non-responders and subclinicals only.
When serum was analysed using ultra performance liquid chromatography electrospray ionisation mass spectrometry (UPLC/ESI-MS) and UPLC tandem MS (MS/MS), only samples from clinical cows could be discriminated. The molecular ions involved could be tentatively identified as a combination of taurine- and glycine-conjugated bile acids. These bile acids all became elevated.
This study confirmed that liver enzyme activities (GGT, GDH) and phytoporphyrin concentrations are not effective as markers of early stage sporidesmin damage. Additionally, the new techniques were unable to detect early stage FE. However, some markers of treated cows were identified. The research does provide a strong foundation for future applications of metabolomics analysis, with MVA and time series statistics, for early stage FE diagnosis
An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes.
Mass spectrometry (MS) has become a crucial technique for the analysis of protein complexes. Native MS has traditionally examined protein subunit arrangements, while proteomics MS has focused on sequence identification. These two techniques are usually performed separately without taking advantage of the synergies between them. Here we describe the development of an integrated native MS and top-down proteomics method using Fourier-transform ion cyclotron resonance (FTICR) to analyse macromolecular protein complexes in a single experiment. We address previous concerns of employing FTICR MS to measure large macromolecular complexes by demonstrating the detection of complexes up to 1.8 MDa, and we demonstrate the efficacy of this technique for direct acquirement of sequence to higher-order structural information with several large complexes. We then summarize the unique functionalities of different activation/dissociation techniques. The platform expands the ability of MS to integrate proteomics and structural biology to provide insights into protein structure, function and regulation
Two-photon physics
It is reviewed how Compton scattering sum rules relate low-energy nucleon
structure quantities to the nucleon excitation spectrum. In particular, the GDH
sum rule and recently proposed extensions of it will be discussed. These
extensions are sometimes more calculationally robust, which may be an advantage
when estimating the chiral extrapolations of lattice QCD results, such as for
anomalous magnetic moments. Subsequently, new developments in our description
of the nucleon excitation spectrum will be discussed, in particular a recently
developed chiral effective field theory framework for the
-resonance region. Within this framework, we discuss results on
and masses, the transition and the
magnetic dipole moment.Comment: 10 pages, prepared for proceedings of Symposium on 20 Years of
Physics at the Mainz Mikrotro
The Chazy XII Equation and Schwarz Triangle Functions
Dubrovin [Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 120-348]
showed that the Chazy XII equation , , is equivalent to a projective-invariant equation for an affine
connection on a one-dimensional complex manifold with projective structure. By
exploiting this geometric connection it is shown that the Chazy XII solution,
for certain values of , can be expressed as where
solve the generalized Darboux-Halphen system. This relationship holds
only for certain values of the coefficients and the
Darboux-Halphen parameters , which are enumerated in
Table 2. Consequently, the Chazy XII solution is parametrized by a
particular class of Schwarz triangle functions
which are used to represent the solutions of the Darboux-Halphen system.
The paper only considers the case where . The associated
triangle functions are related among themselves via rational maps that are
derived from the classical algebraic transformations of hypergeometric
functions. The Chazy XII equation is also shown to be equivalent to a
Ramanujan-type differential system for a triple
Q^2 Evolution of the Neutron Spin Structure Moments using a ^3He Target
We have measured the spin structure functions g_1 and g_2 of ^3He in a double-spin experiment by inclusively scattering polarized electrons at energies ranging from 0.862 to 5.058 GeV off a polarized ^3He target at a 15.5° scattering angle. Excitation energies covered the resonance and the onset of the deep inelastic regions. We have determined for the first time the Q^2 evolution of Γ_1(Q^2)=∫_0^1g_1(x,Q^2)dx, Γ_2(Q^2)=∫_0^1g_2(x,Q^2)dx, and d_2(Q^2)=∫_0^1x^2[2g_1(x,Q^2)+3g_2(x,Q^2)]dx for the neutron in the range 0.1 ≤ Q^2 ≤0.9 GeV^2 with good precision. Γ_1(Q^2) displays a smooth variation from high to low Q^2. The Burkhardt-Cottingham sum rule holds within uncertainties and d_2 is nonzero over the measured range
- …