23,888 research outputs found
Tertiary education in Latvia today and tomorrow
Tertiary education, scenarios, regional development., Teaching/Communication/Extension/Profession, G32,
The Approximate Capacity of the MIMO Relay Channel
Capacity bounds are studied for the multiple-antenna complex Gaussian relay
channel with t1 transmitting antennas at the sender, r2 receiving and t2
transmitting antennas at the relay, and r3 receiving antennas at the receiver.
It is shown that the partial decode-forward coding scheme achieves within
min(t1,r2) bits from the cutset bound and at least one half of the cutset
bound, establishing a good approximate expression of the capacity. A similar
additive gap of min(t1 + t2, r3) + r2 bits is shown to be achieved by the
compress-forward coding scheme.Comment: 8 pages, 5 figures, submitted to the IEEE Transactions on Information
Theor
Tropicalization of classical moduli spaces
The image of the complement of a hyperplane arrangement under a monomial map
can be tropicalized combinatorially using matroid theory. We apply this to
classical moduli spaces that are associated with complex reflection
arrangements. Starting from modular curves, we visit the Segre cubic, the Igusa
quartic, and moduli of marked del Pezzo surfaces of degrees 2 and 3. Our
primary example is the Burkhardt quartic, whose tropicalization is a
3-dimensional fan in 39-dimensional space. This effectuates a synthesis of
concrete and abstract approaches to tropical moduli of genus 2 curves.Comment: 33 page
Unconventional Superconductivity and Density Waves in Twisted Bilayer Graphene
We study electronic ordering instabilities of twisted bilayer graphene with
electrons per supercell, where correlated insulator state and
superconductivity are recently observed. Motivated by the Fermi surface nesting
and the proximity to Van Hove singularity, we introduce a hot-spot model to
study the effect of various electron interactions systematically. Using
renormalization group method, we find /-wave superconductivity and
charge/spin density wave emerge as the two types of leading instabilities
driven by Coulomb repulsion. The density wave state has a gapped energy
spectrum at and yields a single doubly-degenerate pocket upon doping to
. The intertwinement of density wave and superconductivity and the
quasiparticle spectrum in the density wave state are consistent with
experimental observations.Comment: 15 pages, 12 figures; updated discussion and analysis on density wave
state
Light propagation through closed-loop atomic media beyond the multiphoton resonance condition
The light propagation of a probe field pulse in a four-level double-lambda
type system driven by laser fields that form a closed interaction loop is
studied. Due to the finite frequency width of the probe pulse, a
time-independent analysis relying on the multiphoton resonance assumption is
insufficient. Thus we apply a Floquet decomposition of the equations of motion
to solve the time-dependent problem beyond the multiphoton resonance condition.
We find that the various Floquet components can be interpreted in terms of
different scattering processes, and that the medium response oscillating in
phase with the probe field in general is not phase-dependent. The phase
dependence arises from a scattering of the coupling fields into the probe field
mode at a frequency which in general differs from the probe field frequency. We
thus conclude that in particular for short pulses with a large frequency width,
inducing a closed loop interaction contour may not be advantageous, since
otherwise the phase-dependent medium response may lead to a distortion of the
pulse shape. Finally, using our time-dependent analysis, we demonstrate that
both the closed-loop and the non-closed loop configuration allow for sub- and
superluminal light propagation with small absorption or even gain. Further, we
identify one of the coupling field Rabi frequencies as a control parameter that
allows to conveniently switch between sub- and superluminal light propagation.Comment: 10 pages, 8 figure
Semidirect product gauge group and quantization of hypercharge
In the Standard Model the hypercharges of quarks and leptons are not
determined by the gauge group alone. We show that, if we choose the semidirect product group
as its gauge group,
the hyperchages are settled to be . In
addition, the conditions for gauge-anomaly cancellation give strong
constraints. As a result, the ratios of the hypercharges are uniquely
determined and the gravitational anomaly is automatically canceled. The
standard charge assignment to quarks and leptons can be properly reproduced.
For exotic matter fields their hypercharges are also discussed.Comment: 17 pages, 2 tables; LaTeX; typos corrected, references added or
replaced, argument in Secs. 2 and 3 revised, results unchanged; to be
published in Phys. Rew.
- …