802,942 research outputs found

    Atomic simulations of kinetic friction and its velocity dependence at Al/Al and alpha-Al_2O_3/alpha-Al_2O_3 interfaces

    Get PDF
    Kinetic friction during dry sliding along atomistic-scale Al(001)/Al(001) and alpha-Al2O3(0001)/alpha-Al2O3(0001) interfaces has been investigated using molecular dynamics (MD) with recently developed Reactive Force Fields (ReaxFF). It is of interest to determine if kinetic friction variations predicted with MD follow the macroscopic-scale friction laws known as Coulomb's law (for dry sliding) and Stokes' friction law (for lubricated sliding) over a wide range of sliding velocities. The effects of interfacial commensuration and roughness on kinetic friction have been studied. It is found that kinetic friction during sliding at commensurate alpha-Al2O3(0001)/alpha-Al2O3(0001) interfaces exceeds that due to sliding at an incommensurate alpha-Al2O3(0001)/alpha-Al2O3(0001) interface. For both interfaces, kinetic friction at lower sliding velocities deviates minimally from Coulombic friction, whereas at higher sliding velocities, kinetic friction follows a viscous behavior with sliding damped by thermal phonons. For atomically smooth Al(001)/Al(001), only viscous friction is observed. Surface roughness tends to increase kinetic friction, and adhesive transfer causes kinetic friction to increase more rapidly at higher sliding velocities

    Velocity dependence of joint friction in robotic manipulators with gear transmissions

    Get PDF
    This paper analyses the problem of modelling joint friction in robotic manipulators with gear transmissions at joint velocities varying from close to zero until their maximum appearing values. It is shown that commonly used friction models that incorporate Coulomb, (linear) viscous and Stribeck components are inadequate to describe the friction behaviour for the full velocity range. A new friction model is proposed that relies on insights from tribological models. The basic friction model of two lubricated discs in rolling-sliding contact is used to analyse viscous friction and friction caused by asperity contacts inside gears and roller bearings of robot joint transmissions. The analysis shows different viscous friction behaviour for gears and pre-stressed bearings. The sub-models describing the viscous friction and the friction due to the asperity contacts are combined into two friction models; one for gears and one for the pre-stressed roller bearings. In this way, a new friction model [1] is developed that accurately describes the friction behaviour in the sliding regime with a minimal and physically sound parametrisation. The model is linear in the parameters that are temperature dependent, which allows to estimate these parameters during the inertia parameter identification experiments. The model, in which the Coulomb friction effect has disappeared, has the same number of parameters as the commonly used Stribeck model [2]. The model parameters are identified experimentally on a St ¨aubli RX90 industrial robot

    Simulations of the Static Friction Due to Adsorbed Molecules

    Full text link
    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The observed trends in friction can be understood in terms of a simple hard sphere model.Comment: 13 pages, 13 figure

    Friction dependence of shallow granular flows from discrete particle simulations

    Get PDF
    A shallow-layer model for granular flows is completed with a closure relation for the macroscopic bed friction or basal roughness obtained from micro-scale discrete particle simulations of steady flows. We systematically vary the bed friction by changing the contact friction coefficient between basal and flowing particles, while the base remains geometrically rough. By simulating steady uniform flow over a wide parameter range, we obtain a friction law that is a function of both flow and bed variables. Surprisingly, we find that the macroscopic bed friction is only weakly dependent on the contact friction of bed particles and predominantly determined by the properties of the flowing particles

    Existence of long‐time solutions to dynamic problems of viscoelasticity with rate‐and‐state friction

    Get PDF
    We establish existence of global solutions to a dynamic problem of bilateral contact between a rigid surface and a viscoelastic body, subject to rate‐and‐state friction. The term rate‐and‐state friction describes friction laws where the friction is rate‐dependent and depends on an additional internal state variable defined on the contact surface. Our mathematical conditions rule out certain slip laws, but do cover the ageing law, and thus at least one of the rate‐and‐state friction laws commonly used in the geoscience

    Dynamical friction for accelerated motion in a gaseous medium

    Full text link
    Dynamical friction arises from the interaction of a perturber and the gravitational wake it excites in the ambient medium. This interaction is usually derived assuming that the perturber has a constant velocity. In realistic situations, motion is accelerated as for instance by dynamical friction itself. Here, we study the effect of acceleration on the dynamical friction force. We characterize the density enhancement associated with a constantly accelerating perturber with rectilinear motion in an infinite homogeneous gaseous medium and show that dynamical friction is not a local force and that its amplitude may depend on the perturber's initial velocity. The force on an accelerating perturber is maximal between Mach 1 and Mach 2, where it is smaller than the corresponding uniform motion friction. In the limit where the perturber's size is much smaller than the distance needed to change the Mach number by unity through acceleration, a subsonic perturber feels a force similar to uniform motion friction only if its past history does not include supersonic episodes. Once an accelerating perturber reaches large supersonic speeds, accelerated motion friction is marginally stronger than uniform motion friction. The force on a decelerating supersonic perturber is weaker than uniform motion friction as the velocity decreases to a few times the sound speed. Dynamical friction on a decelerating subsonic perturber with an initial Mach number larger than 2 is much larger than uniform motion friction and tends to a finite value as the velocity vanishes in contrast to uniform motion friction.Comment: Published in MNRAS. Revised version (minor typos corrected

    Shear Thickening of Dense Suspensions: The Role of Friction

    Get PDF
    Shear thickening of particle suspensions is characterized by a transition between lubricated and frictional contacts between the particles. Using 3D numerical simulations, we study how the inter-particle friction coefficient influences the effective macroscopic friction coefficient and hence the microstructure and rheology of dense shear thickening suspensions. We propose expressions for effective friction coefficient in terms of distance to jamming for varying shear stresses and particle friction coefficient values. We find effective friction coefficient to be rather insensitive to interparticle friction, which is perhaps surprising but agrees with recent theory and experiments
    • …
    corecore