1,418 research outputs found
A Journey from Improper Gaussian Signaling to Asymmetric Signaling
The deviation of continuous and discrete complex random variables from the
traditional proper and symmetric assumption to a generalized improper and
asymmetric characterization (accounting correlation between a random entity and
its complex conjugate), respectively, introduces new design freedom and various
potential merits. As such, the theory of impropriety has vast applications in
medicine, geology, acoustics, optics, image and pattern recognition, computer
vision, and other numerous research fields with our main focus on the
communication systems. The journey begins from the design of improper Gaussian
signaling in the interference-limited communications and leads to a more
elaborate and practically feasible asymmetric discrete modulation design. Such
asymmetric shaping bridges the gap between theoretically and practically
achievable limits with sophisticated transceiver and detection schemes in both
coded/uncoded wireless/optical communication systems. Interestingly,
introducing asymmetry and adjusting the transmission parameters according to
some design criterion render optimal performance without affecting the
bandwidth or power requirements of the systems. This dual-flavored article
initially presents the tutorial base content covering the interplay of
reality/complexity, propriety/impropriety and circularity/noncircularity and
then surveys majority of the contributions in this enormous journey.Comment: IEEE COMST (Early Access
Area spectral efficiency of soft-decision space–time–frequency shift-keying-aided slow-frequency-hopping multiple access
Slow-frequency-hopping multiple access (SFHMA) can provide inherent frequency diversity and beneficially randomize the effects of cochannel interference. It may also be advantageously combined with our novel space-time–frequency shift keying (STFSK) scheme. The proposed system’s area spectral efficiency is investigated in various cellular frequency reuse structures. Furthermore, it is compared to both classic Gaussian minimum shift keying (GMSK)-aided SFHMA and GMSK-assisted time- division/frequency-division multiple access (TD/FDMA). The more sophisticated third-generation wideband code-division multiple access (WCDMA) and the fourth-generation Long Term Evolution (LTE) systems were also included in our comparisons. We demonstrate that the area spectral efficiency of the STFSK-aided SFHMA system is higher than the GMSK-aided SFHMA and TD/FDMA systems, as well as WCDMA, but it is only 60% of the LTE system
Survey on wireless technology trade-offs for the industrial internet of things
Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment
The world's fastest wireless backhaul radio A case study in industry-research collaboration
Fibre is commonly perceived to be the dominant transport mechanism for transferring data from access points back to a central office, where it is aggregated onto the core network. However, high speed and long range wireless backhaul remains a cost-effective alternative to fibre networks. In some areas, wireless backhaul is dominant and becoming more and more attractive. However, commercially available wireless backhaul systems do not meet the requirements for both high speed and long range at the same time with sufficiently low latency for some applications. Traditional microwave systems can achieve long transmission range, but the data rates are then limited to a few hundred megabits per second. Multi-gigabit per second wireless communications can be achieved using millimetre-wave (mm-wave) frequency bands, especially in E-band, but the practical transmission range has then always been a major weakness. In this article, the world's first 5Gbps radio solution' and the fastest commercial backhaul product - developed by EM Solutions Pty Ltd with the Commonwealth Scientific and Industrial Research Organisation (CSIRO) - is described. As well as achieving a state-of-the-art data rate, other key design features include maximal path length, minimal latency, and constant antenna pointing under wind and tower vibration
- …