694,947 research outputs found

    Evolution of Primordial Protostellar Clouds --- Quasi-Static Analysis ---

    Get PDF
    The contraction processes of metal-free molecular clouds of starlike mass (or cloud cores) are investigated. We calculate radiative transfer of the H_2 lines and examine quasi-static contraction with radiative cooling. Comparing two time-scales, the free-fall time t_ff and the time-scale of quasi-static contraction t_qsc (nearly equal to t_cool, the cooling time) of these cores, we find that the ratio of the two time-scales t_ff/t_qsc, i.e., the efficiency of cooling, becomes larger with contraction even under the existence of cold and opaque envelopes. In particular, for fragments of primordial filamentary clouds, for which t_ff is nearly equal to t_qsc at the fragmentation epoch, they collapse dynamically in the free-fall time-scale. This efficiency of cooling is unique to line cooling.Comment: 13 pages, 8 Postscript figures, uses ptpte

    Next to leading order non Fermi liquid corrections to the neutrino emissivity and cooling of the neutron star

    Full text link
    In this work we derive the expressions of the neutrino mean free path(MFP) and emissivity with non Fermi liquid corrections up to next to leading order(NLO) in degenerate quark matter. The calculation has been performed both for the absorption and scattering processes. Subsequently the role of these NLO corrections on the cooling of the neutron star has been demonstrated. The cooling curve shows moderate enhancement compared to the leading order(LO) non-Fermi liquid result. Although the overall correction to the MFP and emissivity are larger compared to the free Fermi gas, the cooling behavior does not alter significantly.Comment: 8 pages, 8 figures, references added, matches published versio

    Cooling of suspended nanostructures with tunnel junctions

    Full text link
    We have investigated electronic cooling of suspended nanowires with SINIS tunnel junction coolers. The suspended samples consist of a free standing nanowire suspended by four narrow (\sim 200 nm) bridges. We have compared two different cooler designs for cooling the suspended nanowire. We demonstrate that cooling of the nanowire is possible with a proper SINIS cooler design

    Cavity sideband cooling of a single trapped ion

    Full text link
    We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped 88Sr+ ion in the resolved sideband regime. We measure the spectrum of cavity transitions, the rates of cavity heating and cooling, and the steady-state cooling limit. The cavity cooling dynamics and cooling limit of 22.5(3) motional quanta, limited by the moderate coupling between the ion and the cavity, are consistent with a simple model [Phys. Rev. A 64, 033405] without any free parameters, validating the rate equation model for cavity cooling.Comment: 5 pages, 4 figure

    Neutrino Propagation In Color Superconducting Quark Matter

    Get PDF
    We calculate the neutrino mean free path in color superconducting quark matter, and employ it to study the cooling of matter via neutrino diffusion in the superconducting phase as compared to a free quark phase. The cooling process slows when quark matter undergoes a second order phase transition to a superconducting phase at the critical temperature TcT_c. Cooling subsequently accelerates as the temperature decreases below TcT_c. This will directly impact the early evolution of a newly born neutron star should its core contain quark matter. Consequently, there may be observable changes in the early neutrino emission which would provide evidence for superconductivity in hot and dense matter.Comment: 12 pages, 5 figure

    Thermal collapse of a granular gas under gravity

    Full text link
    Free cooling of a gas of inelastically colliding hard spheres represents a central paradigm of kinetic theory of granular gases. At zero gravity the temperature of a freely cooling homogeneous granular gas follows a power law in time. How does gravity, which brings inhomogeneity, affect the cooling? We combine molecular dynamics simulations, a numerical solution of hydrodynamic equations and an analytic theory to show that a granular gas cooling under gravity undergoes thermal collapse: it cools down to zero temperature and condenses on the bottom of the container in a finite time.Comment: 4 pages, 12 eps figures, to appear in PR
    corecore